|
||||
|
Тепловой барьер Исследования, проведенные на рубеже 1940-1950-х годов, позволили разработать ряд аэродинамических и технологических решений, обеспечивающих безопасное преодоление звукового барьера даже серийными самолетами. Тогда казалось, что покорение звукового барьера создает неограниченные возможности дальнейшего увеличения скорости полета. Буквально за несколько лет было облетано около 30 типов сверхзвуковых самолетов, из которых значительное число было запущено в серийное производство. Многообразие использованных решений привело к тому, что многие проблемы, связанные с полетами на больших сверхзвуковых скоростях, были всесторонне изучены и решены. Однако встретились новые проблемы, значительно более сложные, нежели звуковой барьер. Они вызваны нагревом конструкции летательного аппарата при полете с большой скоростью в плотных слоях атмосферы. Это новое препятствие в свое время назвали тепловым барьером. В отличие от звукового новый барьер нельзя охарактеризовать постоянной, подобной скорости звука, поскольку он зависит как от параметров полета (скорости и высоты) и конструкции планера (конструктивных решений и использованных материалов), так и от оборудования самолета (системы кондиционирования, охлаждения и т.п.). Таким образом, в понятие «тепловой барьер» входит не только проблема опасного нагрева конструкции, но также такие вопросы, как теплообмен, прочностные свойства материалов, принципы конструирования, кондиционирование воздуха и т.п. Нагрев самолета в полете происходит главным образом по двум причинам: от аэродинамического торможения воздушного потока и от тепловыделения двигательной установки. Оба эти явления составляют процесс взаимодействия между средой (воздухом, выхлопными газами) и обтекаемым твердым телом (самолетом, двигателем). Второе явление типично для всех самолетов, и связано оно с повышением температуры элементов конструкции двигателя, воспринимающих тепло от воздуха, сжатого в компрессоре, а также от продуктов сгорания в камере и выхлопной трубе. При полете с большими скоростями внутренний нагрев самолета происходит также и от воздуха, тормозящегося в воздушном канале перед компрессором. При полете на малых скоростях воздух, проходящий через двигатель, имеет относительно низкую температуру, вследствие чего опасный нагрев элементов конструкции планера не происходит. При больших скоростях полета ограничение нагрева конструкции планера от горячих элементов двигателя обеспечивается посредством дополнительного охлаждения воздухом низкой температуры. Обычно используется воздух, отводимый от воздухозаборника с помощью направляющей, отделяющей пограничный слой, а также воздух, захватываемый из атмосферы с помощью дополнительных заборников, размещенных на поверхности гондолы двигателя. В двух- контурных двигателях для охлаждения используется также воздух внешнего (холодного) контура. Таким образом, уровень теплового барьера для сверхзвуковых самолетов определяется внешним аэродинамическим нагревом. Интенсивность нагрева поверхности, обтекаемой потоком воздуха, зависит от скорости полета. При малых скоростях этот нагрев так незначителен, что повышение температуры может не приниматься во внимание. При большой скорости воздушный поток обладает высокой кинетической энергией, в связи с чем повышение температуры может быть значительным. Касается это равным образом и температуры внутри самолета, поскольку высокоскоростной поток, заторможенный в воздухозаборнике и сжатый в компрессоре двигателя, приобретает настолько высокую температуру, что оказывается не в состоянии отводить тепло от горячих частей двигателя. Рост температуры обшивки самолета в результате аэродинамического нагрева вызывается вязкостью воздуха, обтекающего самолет, а также его сжатием на лобовых поверхностях. Вследствие потери скорости частицами воздуха в пограничном слое в результате вязкостного трения происходит повышение температуры всей обтекаемой поверхности самолета. В результате сжатия воздуха температура растет, правда, лишь локально (этому подвержены главным образом носовая часть фюзеляжа, лобовое стекло кабины экипажа, а особенно передние кромки крыла и оперения), но зато чаще достигает значений, небезопасных для конструкции. В этом случае в некоторых местах происходит почти прямое соударение потока воздуха с поверхностью и полное динамическое торможение. В соответствии с принципом сохранения энергии вся кинетическая энергия потока при этом преобразуется в тепловую и в энергию давления. Соответствующее повышение температуры прямо пропорционально квадрату скорости потока до торможения (или, без учета ветра – квадрату скорости самолета) и обратно пропорционально высоте полета. Теоретически, если обтекание имеет установившийся характер, погода безветренна и безоблачна и не происходит переноса тепла посредством излучения, то тепло не проникает внутрь конструкции, а температура обшивки близка к так называемой температуре адиабатического торможения. Зависимость ее от числа Маха (скорости и высоты полета) приведена в табл. 4. В действительных условиях повышение температуры обшивки самолета от аэродинамического нагрева, т. е. разница между температурой торможения и температурой окружения, получается несколько меньшей ввиду теплообмена со средой (посредством излучения), соседними элементами конструкции и т. п. Кроме того, полное торможение потока происходит лишь в так называемых критических точках, расположенных на выступающих частях самолета, а приток тепла к обшивке зависит также от характера пограничного слоя воздуха (он более интенсивен для турбулентного пограничного слоя). Значительное снижение температуры происходит также при полетах сквозь облака, особенно когда они содержат переохлажденные капли воды и кристаллики льда. Для таких условий полета принимается, что снижение температуры обшивки в критической точке по сравнению с теоретической температурой торможения может достичь даже 20-40%. Таблица 4. Зависимость температуры обшивки от числа Маха Тем не менее общий нагрев самолета в полете со сверхзвуковыми скоростями (особенно на малой высоте) иногда так высок, что повышение температуры отдельных элементов планера и оборудования приводит либо к их разрушению, либо, как минимум, к необходимости изменения режима полета. Например, при исследованиях самолета ХВ-70А в полетах на высотах более 21 ООО м со скоростью М = 3 температура входных кромок воздухозаборника и передних кромок крыла составляла 580-605 К, а остальной части обшивки 470-500 К.Последствия повышения температуры элементов конструкции самолета до таких больших значений можно оценить в полной мере, если учесть тот факт, что уже при температурах около 370 К размягчается органическое стекло, повсеместно употребляемое для остекления кабин, кипит топливо, а обычный клей теряет прочность. При 400 К значительно снижается прочность дюралюминия, при 500 К происходит химическое разложение рабочей жидкости в гидросистеме и разрушение уплотнений, при 800 К теряют необходимые механические свойства титановые сплавы, при температуре выше 900 К плавятся алюминий и магний, а сталь размягчается. Повышение температуры приводит также к разрушению покрытий, из которых анодирование и хромирование могут использоваться до 570 К, никелирование-до 650 К, а серебрение-до 720 К. После появления этого нового препятствия в увеличении скорости полета начались исследования с целью исключить либо смягчить его последствия. Способы защиты самолета от эффектов аэродинамического нагрева определяются факторами, препятствующими росту температуры. Кроме высоты полета и атмосферных условий, существенное влияние на степень нагрева самолета оказывают: – коэффициент теплопроводности материала обшивки; – величина поверхности (особенно лобовой) самолета; -время полета. Отсюда следует, что простейшими способами уменьшения нагрева конструкции являются увеличение высоты полета и ограничение до минимума его продолжительности. Эти способы использовались в первых сверхзвуковых самолетах (особенно в экспериментальных). Благодаря довольно высокой теплопроводности и теплоемкости материалов, употребляемых для изготовления теплонапряженных элементов конструкции самолета, от момента достижения самолетом высокой скорости до момента разогрева отдельных элементов конструкции до расчетной температуры критической точки проходит обычно достаточно большое время. В полетах, продолжающихся несколько минут (даже на небольших высотах), разрушающие температуры не достигаются. Полет на больших высотах происходит в условиях низкой температуры (около 250 К) и малой плотности воздуха. Вследствие этого количество тепла, отдаваемого потоком поверхностям самолета, невелико, а теплообмен протекает дольше, что значительно смягчает остроту проблемы. Аналогичный результат дает ограничение скорости самолета на малых высотах. Например, во время полета над землей со скоростью 1600 км/ч прочность дюралюминия снижается только на 2%, а увеличение скорости до 2400 км/ч приводит к снижению его прочности на величину до 75% в сравнении с первоначальным значением. Рис. 1.14. Распределение температуры в воздушном канале и в двигателе самолета «Конкорд» при полете с М = 2,2 (а) и температуры обшивки самолета ХВ-70А при полете с постоянной скоростью 3200 км/ч (б). Однако необходимость обеспечения безопасных условий эксплуатации во всем диапазоне используемых скоростей и высот полета вынуждает конструкторов искать соответствующие технические средства. Поскольку нагрев элементов конструкции самолета вызывает снижение механических свойств материалов, возникновение термических напряжений конструкции, а также ухудшение условий работы экипажа и оборудования, такие технические средства, используемые в существующей практике, можно разделить на три группы. Они соответственно включают применение 1) теплостойких материалов, 2) конструктивных решений, обеспечивающих необходимую теплоизоляцию и допустимую деформацию деталей, а также 3) систем охлаждения кабины экипажа и отсеков оборудования. В самолетах с максимальной скоростью М = 2,0-1-2,2 широко применяются сплавы алюминия (дюрали), которые характеризуются относительно высокой прочностью, малой плотностью и сохранением прочностных свойств при небольшом повышении температуры. Дюрали обычно дополняются стальными либо титановыми сплавами, из которых выполняются части планера, подвергающиеся наибольшим механическим или тепловым нагрузкам. Сплавы титана нашли применение уже в первой половине 50-х годов сначала в очень небольших масштабах (сейчас детали из них могут составлять до 30% массы планера). В экспериментальных самолетах с М ~ 3 становится необходимым применение жаропрочных стальных сплавов как основного конструкционного материала. Такие стали сохраняют хорошие механические свойства при высоких температурах, характерных для полетов с гиперзвуковыми скоростями, но их недостатками являются высокая стоимость и большая плотность. Эти недостатки в определенном смысле ограничивают развитие высокоскоростных самолетов, поэтому ведутся исследования и других материалов. В 70-х годах осуществлены первые опыты применения в конструкции самолетов бериллия, а также композиционных материалов на базе волокон бора или углерода. Эти материалы пока имеют высокую стоимость, но вместе с тем для них характерны малая плотность, высокие прочность и жесткость, а также значительная термостойкость. Примеры конкретных применений этих материалов при постройке планера приведены в описаниях отдельных самолетов. Другим фактором, существенно влияющим на работоспособность нагреваемой конструкции самолета, является эффект так называемых термических напряжений. Возникают они в результате температурных перепадов между внешними и внутренними поверхностями элементов, а особенно между обшивкой и внутренними элементами конструкции самолета. Поверхностный нагрев планера приводит к деформации его элементов. Например, может произойти такое коробление обшивки крыла, которое приведет к изменению аэродинамических характеристик. Поэтому во многих самолетах используется паяная (иногда клееная) многослойная обшивка, которая отличается высокой жесткостью и хорошими изоляционными свойствами, либо применяются элементы внутренней конструкции с соответствующими компенсаторами (например, в самолете F-105 стенки лонжерона изготовляются из гофрированного листа). Известны также опыты охлаждения крыла с помощью топлива (например, у самолета Х-15), протекающего под обшивкой на пути от бака до форсунок камеры сгорания. Однако при высоких температурах топливо обычно подвергается коксованию, поэтому такие опыты можно считать неудачными. Сейчас исследуются различные методы, среди которых нанесение изоляционного слоя из тугоплавких материалов путем плазменного напыления. Другие считавшиеся перспективными методы не нашли применения. Среди прочего предлагалось использовать «защитный слой», создаваемый путем вдува газа на обшивку, охлаждение «выпотеванием» посредством подачи на поверхность сквозь пористую обшивку жидкости с высокой температурой испарения, а также охлаждение, создаваемое плавлением и уносом части обшивки (абляционные материалы). Довольно специфичной и вместе с тем очень важной задачей является поддержание соответствующей температуры в кабине экипажа и в отсеках оборудования (особенно электронного), а также температуры топливных и гидравлических систем. В настоящее время эта проблема решается путем использования высокопроизводительных систем кондиционирования, охлаждения и рефрижерации 1* , эффективной теплоизоляции, применения рабочих жидкостей гидросистем с высокой температурой испарения и т.д. Проблемы, связанные с тепловым барьером, должны решаться комплексно. Любой прогресс в этой области отодвигает барьер для данного типа самолетов в сторону большей скорости полета, не исключая его как такового. Однако стремление к еще большим скоростям приводит к созданию еще более сложных конструкций и оборудования, требующих применения более качественных материалов. Это заметным образом отражается на массе, закупочной стоимости и на затратах по эксплуатации и обслуживанию самолета. Из приведенных в табл. 2 данных самолетов-истребителей видно, что в большинстве случаев рациональной считалась максимальная скорость 2200-2600 км/ч. Лишь в некоторых случаях считают, что скорость самолета должна превосходить М ~ 3. К самолетам, способным развивать такие скорости, относятся экспериментальные машины Х-2, ХВ-70А и Т. 188, разведывательный SR-71, а также самолет Е-266. 1* Рефрижерацией называется принудительный перенос тепла от холодного источника к среде с высокой температурой при искусственном противодействии естественному направлению движения тепла (от теплого тела к холодному, когда имеет место процесс охлаждения). Простейшим рефрижератором является бытовой холодильник. |
|
||
Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Наверх |
||||
|