Эволюция фюзеляжа

Непрерывный рост удельной нагрузки на крыло, а также уменьшение относительной толщины профиля (т.е. уменьшение габаритов и особенно внутренних объемов крыла) приводят к тому, что в современных боевых самолетах оборудование, вооружение, часть топливных емкостей (а часто и двигательная установка), боевая нагрузка и т.п., не говоря уже о кабине экипажа, размещаются в фюзеляже. Кроме того, фюзеляж объединяет в единое целое отдельные части планера самолета-крыло, оперение и шасси. Эти обстоятельства приводят к увеличению размеров фюзеляжа и, следовательно, к ухудшению аэродинамических характеристик всего самолета, главным образом в результате возрастания коэффициента сопротивления. Некоторые размеры фюзеляжа, особенно его длина, определяются не только необходимым полезным пространством, но также и минимально допустимым с точки зрения устойчивости и управляемости расстоянием от оперения (в первую очередь горизонтального) до центра тяжести самолета.

В первые 10-15 лет разработки и эксплуатации сверхзвуковых самолетов считалось, что аэродинамически наиболее совершенной формой фюзеляжа является форма тела вращения с удлинением, зависящим от скорости полета. Благодаря пространственному характеру обтекания фюзеляжа волновой кризис возникает на нем позже, чем на профиле крыла с такой же относительной толщиной. Ввиду этого первые сверхзвуковые самолеты со скоростью полета около 1400 км/ч имели веретенообразные фюзеляжи, т.е. с контуром обычного дозвукового симметричного профиля: носовая часть закруглена по небольшому радиусу, миделево сечение расположено на 40-50% длины от передней точки и удлинение фюзеляжа равно 6-8. При увеличении сверхзвуковой скорости полета волновое сопротивление такого фюзеляжа значительно возрастает, поэтому оказалось необходимым применение фюзеляжей с остроконечной носовой частью и малой относительной толщиной, т. е. с удлинением до 10 и даже до 15 (особенно в тяжелых самолетах). В случае однодвигатель- ного самолета с лобовым воздухозаборником и соплом в «усеченной» хвостовой части длина фюзеляжа (и соответственно поверхность, обтекаемая внешним потоком) существенно уменьшается, вследствие чего уменьшается и аэродинамическое сопротивление. Таким образом, в конкретных случаях отклонение от теоретических форм для удовлетворения требований, касающихся компоновки, технологии, массы, прочности конструкции и т.п., может практически не ухудшать летных качеств самолета.

Поскольку применяемые двигательные установки при заданных габаритах и массе имеют ограниченную тягу, особое внимание при проектировании обращается на профилирование больших выступающих элементов фюзеляжа (надстроек), таких, как кабина, воздухозаборники и радиолокационные устройства. Эти надстройки, если они не имеют аэродинамически правильных форм, не только увеличивают сопротивление (уменьшая М кр ), но также на некоторых режимах полета уменьшают устойчивость и могут быть причиной появления вибраций. Чтобы избежать этого, надстройки вписываются по мере возможности в общую форму фюзеляжа, а выступающим элементам придаются большие углы наклона лобовых поверхностей и плавные очертания, переходящие в очертания фюзеляжа. Много внимания уделяется также аэродинамическому проектированию элементов соединения фюзеляжа с другими частями планера, особенно с крылом. Аэродинамическая интерференция между крылом и фюзеляжем при нерациональном их сочленении вызывает дополнительный прирост сопротивления, уменьшает М кр , а в некоторых случаях ведет к потере устойчивости (особенно при больших углах атаки) либо к возникновению вибраций оперения (бафтингу). При небольших скоростях полета интерференция вызывает преждевременный отрыв воздушного потока вследствие появления диффузорного эффекта между стенкой фюзеляжа и верхней поверхностью крыла. С этой точки зрения хуже всего схема низ- коп лана (построен 21 самолет такой схемы), особенно с фюзеляжем круглого сечения и прямым крылом. Поэтому в области соединения крыла с фюзеляжем часто предусматривают специальные обтекатели (зализы), предназначенные для выравнивания потока. Среднеплан (42 самолета), а особенно высокоплан (25 самолетов) в этом отношении гораздо лучше, так как устойчивость у высокоплана выше, хотя он и уступает среднеплану по величине сопротивления. При больших дозвуковых скоростях полета явление интерференции зависит от взаимного наложения полей скоростей вокруг крыла и фюзеляжа. В неблагоприятном случае это может стать причиной преждевременного достижения потоком воздуха локальных скоростей звука со всеми вытекающими из этого аэродинамическими последствиями, вызываемыми сжимаемостью воздуха.

Соединение фюзеляжа со стреловидным или треугольным крылом также может создавать значительное волновое сопротивление. Для его уменьшения эти соединения выполняются так, чтобы не происходило наложения друг на друга локальных областей пониженного и повышенного давлений.

С этой точки зрения одним из важнейших достижений первого периода развития сверхзвуковых самолетов было установление так называемого правила площадей, состоящего в том, что комбинация крыла с фюзеляжем обладает наименьшим сопротивлением, когда распределение нормальных к потоку сечений по длине самолета имеет тот же характер, что и у тела вращения наименьшего сопротивления. Практически это означает уменьшение сечений фюзеляжа в области крыла на величину, равную площади соответствующего нормального к потоку сечения крыла. Эффективность правила площадей в отношении уменьшения волнового сопротивления зависит, конечно, помимо фюзеляжа, и от других частей самолета, тем не менее наилучшие результаты достигаются при вытянутых фюзеляжах и коротких тонких крыльях. Особенно это касается крыльев с малым удлинением, обтекание которых является пространственным и имеет тенденцию к осевой симметрии. В связи с этим в некоторых самолетах, как бы «от природы» соответствующих упомянутому правилу, можно почти полностью пренебречь характерным сужением фюзеляжа (как, например, у английского самолета «Лайтнинг»). Это происходит потому, что каждый из факторов, уменьшающих волновое сопротивление (малая относительная толщина профиля, большая стреловидность, малое удлинение крыла), является определенным шагом в направлении выполнения правила площадей, т.е. самолет, выполненный с соблюдением требований аэродинамики, приближается по форме к геометрическому телу с малым аэродинамическим сопротивлением.

Невысокая эффективность правила площадей в отношении самолетов с М =› 2 иногда служит поводом к отрицанию его, тем более что выполнение этого правила ведет к увеличению стоимости изготовления планера самолета, а также к уменьшению полезного объема фюзеляжа. Кроме того, многие современные самолеты располагают такой тяговооруженностью, что преодоление звукового барьера не представляет для них особой трудности. Однако, с другой стороны, необходимость приспосабливания самолетов, особенно многоцелевых, к долговременным полетам с околозвуковыми скоростями на малой высоте привела к тому, что большинство из них строится в соответствии с правилом площадей, хотя внешне это и не всегда заметно.

За последние 10-20 лет появились сверхзвуковые самолеты, фюзеляж которых используется для создания подъемной силы. Такой фюзеляж имеет форму не тела вращения (конус-цилиндр-конус), а параллелепипеда. Это означает замену круглого или овального поперечного сечения фюзеляжа сечением, близким к прямоугольному, причем одна из больших сторон прямоугольника образует нижнюю часть фюзеляжа, которая и играет роль дополнительной несущей поверхности. Изменению подвергся также и профиль самолета. Использовавшаяся ранее форма днища фюзеляжа с кривизной, очерченной практически дугой одного радиуса, была заменена формой с кривизной, описываемой тремя дугами, создающими выпуклость носовой и хвостовой частей и вогнутость средней части. Фюзеляж, обладающий такой формой, получил название несущего. Характерной чертой фюзеляжей этого типа является еще и то, что фюзеляжная часть планера у таких самолетов значительно больше. Несущие фюзеляжи имеют самолеты F-4, F-5, SR-71A, F-111A, Е-266, «Ягуар» и др.

Другой, не менее характерной чертой сверхзвуковых самолетов является применение фюзеляжей с носовой частью, значительно выдвинутой вперед. Конечно, такое размещение больших масс вдоль оси самолета повлекло за собой существенное уменьшение отношения момента инерции относительно продольной оси к моментам инерции относительно других осей. Заметное удлинение самолета в сравнении с его размахом (длина фюзеляжа, отнесенная к размаху крыла, находится в пределах от 1,6 для самолета F-102A до 2,6 для самолета Х-3) не только ухудшило маневренность в вертикальной плоскости, но также затруднило поперечную управляемость ввиду слишком быстрого прироста угловой скорости при отклонении элеронов и управляемость по курсу вследствие возникновения эффектов обратного действия руля направления.









Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Наверх