|
||||
|
Тема 5. СОВРЕМЕННЫЕ ВЗГЛЯДЫ НА ПРОИСХОЖДЕНИЕ И ЭВОЛЮЦИЮ ЖИЗНИ 5.1. Общие принципы современной биологии Биология – наука о происхождении и развитии живого, его строении, формах организации и способах активности. Современная биология представляет собой динамичное знание, меняющееся буквально на глазах. Лавинообразное накопление новых экспериментальных данных подчас опережает возможности его теоретической интерпретации и объяснения. Стремительно растет число междисциплинарных исследований на стыке биологии и химии, биологии и физики, биологии и антропологии и т. п. Это в свою очередь требует использования методов и средств, которые прежде были совершенно чужды биологии. Насчитывается уже более 50 наук внутри комплекса биологического знания, среди них: ботаника и зоология, генетика и молекулярная биология, анатомия и морфология, цитология и биогео-ценология, биофизика и биохимия, палеонтология и эмбриология, эволюционная биология и экология и т. п. Такое многообразие научных дисциплин объясняется сложностью объекта исследования – живой материи. Биология возникла и долгое время развивалась как описательная наука, осуществлявшая анализ и классификацию огромного эмпирического материала (2.5). Перед современной биологией по-прежнему стоит задача классификации всего многообразия живых организмов. Считается, что до сих пор описано только две трети существующих видов, а это 1,2 млн животных, 500 тыс. растений, сотни тысяч грибов, около 3 тыс. бактерий и т. п. Тем не менее в современной биологии произошли существенные методологические изменения. В XX в. биологическое знание приобрело объяснительный характер. Современная биология использует генетический и системно-структурный подходы. В рамках первого рассматриваются вопросы происхождения и эволюции живой материи, причины, механизмы и особенности биогенеза. В рамках второго изучаются различные уровни организации живого, принципы их функционирования, особенности взаимосвязей и т. д. Особенностью современного этапа развития биологического знания является его тесная связь не только с другими науками естественно-научного комплекса, но и с гуманитарным и социальным познанием. Ценностная составляющая биологического знания по мере развития этой научной дисциплины только увеличивается. Успехи биофизики и биохимии, молекулярной биологии и генетики позволяют говорить о прорыве в наших знаниях о сущности живого. Однако, все ближе подходя к разгадке тайны жизни, человечество сталкивается с множеством мировоззренческих проблем, решение которых необходимо, в том числе и в целях самосохранения и выживания. В связи с этим некоторые данные современной биологии требуют философского осмысления и интерпретации. Вместе с тем биология оказывается тесно связанной с практическими нуждами, более того, огромное число теоретических проблем возникает именно для решения конкретных практических задач: медицинских, экологических, экономических, политических и т. п. Все эти изменения свидетельствуют: в середине XX в. в биологии произошла научная революция, по масштабам сравнимая с революцией в физике и астрономии. Современная биология утверждает единство живой материи на всех уровнях, представляя мир живого как огромную систему систем, в которой каждый компонент обладает собственными специфическими свойствами и соединяется с другими особым типом связей. Развитие знаний приводит к постепенной трансформации представлений о сущности жизни, единстве космической и биологической эволюции, взаимодействии биологического и социального в человеке и т. п. Новые биологические данные изменяют ту картину мира, которая на протяжении длительного времени формировалась физикой. Открытия в биологии определяют дальнейшее развитие всего естествознания. Именно поэтому современная научная картина мира невозможна без биологических знаний. Более того, биология становится тем основанием, на котором формируются новые мировоззренческие принципы, определяющие самопонимание человека XXI в. (7.3). 5.2. Современные представления о происхождении жизни Возникновение и эволюция биологических систем – исходная тема биологии. Вокруг нее концентрируются все другие частнонаучные проблемы и вопросы, а также строятся философские обобщения и выводы. В соответствии с двумя основными мировоззренческими позициями – материалистической и идеалистической – еще в древней философии сложились противоположные концепции происхождения жизни: креационизм и материалистическая теория происхождения органической природы из неорганической. Сторонники креационизма утверждают, что жизнь возникла в результате акта божественного творения, свидетельством чего является наличие в живых организмах особой силы, которая управляет всеми биологическими процессами. Сторонники концепции происхождения жизни из неживой природы утверждают, что органическая природа возникла благодаря действию естественных законов. Позже эта позиция была конкретизирована в идее самозарождения жизни. Концепция самозарождения, несмотря на ошибочность, сыграла позитивную роль, опыты, призванные подтвердить ее, предоставили богатый эмпирический материал для развивающейся биологической науки. Окончательный отказ от идеи самозарождения произошел только в XIX в. В XIX в. была также выдвинута гипотеза вечного существования жизни и ее космического происхождения на Земле. В 1865 г. немецкий врач Г. Рихтер высказал предположение, что жизнь существует в космосе и переносится с одной планеты на другую. В 1907 г. шведский ученый С. Аррени-ус выдвинул схожую гипотезу, согласно которой зародыши жизни вечно существуют во Вселенной, движутся в космическом пространстве под влиянием световых лучей и, оседая на поверхности планеты, дают начало жизни. Эта гипотеза получила название панспермии. В начале XX в. идею космического происхождения биологических систем на Земле и вечности существования жизни в космосе развивал русский ученый В.И. Вернадский. В современной науке принята гипотеза абиогенного (небиологического) происхождения жизни под действием естественных причин в результате длительного процесса космической, геологической и химической эволюции – абиогенез. Абиогенная концепция не исключает возможности существования жизни в космосе и ее космического происхождения на Земле. Понятно, что воспроизвести процессы, происходившие в момент зарождения жизни, невозможно, поэтому любые заключения по этому вопросу и любые интерпретации этой темы основаны на методе моделирования (1.5). Первый этап возникновения живого связан с химической эволюцией. После возникновения Земля представляла собой раскаленный шар. Постепенное остывание планеты способствовало тому, что тяжелые химические элементы перемещались к ее центру, а легкие постепенно скапливались на поверхности. Легкие элементы – кислород, углерод, азот и водород – стали взаимодействовать друг с другом, и в ходе дальнейшей химической эволюции появились различные органические соединения. Земная жизнь имеет углеродную основу, чему способствуют особые физические свойства этого химического элемента. Так, углерод способен создавать самые разнообразные структуры, число возможных органических соединений на основе углерода составляет десятки миллионов. Соединения углерода активны при невысокой температуре, даже при небольшой перестройке молекул их химическая активность может существенно меняться. Соединения углерода с водородом, азотом, кислородом, серой, железом и т. п. обладают высокими каталитическими свойствами. Кроме того, многие углеродные соединения хорошо растворяются в воде. Тем не менее ученые не исключают возможности возникновения жизни и на иной, например, кремниевой основе. По мере остывания земной поверхности происходило сгущение водяных паров, что впоследствии привело к образованию огромных водоемов. Результатом активной вулканической деятельности на первых этапах эволюции нашей планеты стал выброс на ее поверхность различных карбидов – соединений углерода с металлами. Карбиды смывались в первичный океан, где вступали во взаимодействие с водой. В результате этих химических реакций образовались различные углеводородные соединения. Второй этап возникновения живого связан с появлением белковыгх веществ. Присутствие в водах первичного океана большого числа углеродных соединений привело к возникновению концентрированного «органического бульона», в котором осуществлялся дальнейший процесс синтеза сложных органических молекул – белков и нуклеиновых кислот – из достаточно простых углеродных соединений. Одним из условий для синтеза сложных органических молекул – биополимеров – является высокая концентрация исходных веществ. Предполагается, что необходимые условия сложились в результате осаждения простых органических молекул на минеральных частицах, например на глине, первичных водоемов. Кроме того, органические молекулы могли образовывать тонкую пленку на поверхности воды, которая под воздействием ветра и водных потоков сбивалась к берегу, образуя толстые слои. Еще одним условием для синтеза биополимеров является наличие бескислородной среды, поскольку кислород, будучи сильным окислителем, моментально разрушил бы исходные органические соединения. Американский ученый Г. Юри выдвинул предположение, что первичная атмосфера Земли действительно была бескислородной и носила восстановительный характер. Она была насыщена инертными газами – гелием, неоном, аргоном, содержала водород, метан, аммиак и азот. Именно в такой среде легко создаются органические соединения. Вторичная атмосфера Земли имела уже иной состав, который стал следствием развития жизни. Вторичная атмосфера на 20 % состояла из кислорода и носила окислительный характер. Для подобного преобразования земной атмосферы понадобилось не менее 1 млрд лет. Идея Г. Юри оказала значительное влияние на развитие представлений о происхождении жизни. Возможность абиогенного синтеза биополимеров – белковых молекул и азотистых оснований – была экспериментально доказана в середине XX в. В 1953 г. американский ученый С. Миллер смоделировал первичную атмосферу Земли и синтезировал жирные кислоты, уксусную и муравьиную кислоты, мочевину и аминокислоты путем пропускания электрических зарядов через смесь инертных газов. Таким образом было продемонстрировано, как под действием абиогенных факторов возможен синтез сложных органических соединений. Итак, под воздействием высокой температуры, ионизирующего и ультрафиолетового излучения, атмосферного электричества из простейших органических соединений образовались белки, жиры, углеводы и аминокислоты. Согласно гипотезе русского ученого А.И. Опарина, которая была изложена в работе «Происхождение жизни» (1924), смешиваясь в первичном «бульоне», поначалу разрозненные органические соединения способны образовывать коацерватные капли. Коацерваты уже обладают рядом свойств, которые объединяют их с простейшими живыми существами. Так, например, коацерваты способны поглощать вещества из окружающей среды, вступать во взаимодействия друг с другом, увеличиваться в размерах и т. п. Однако в отличие от живых существ коацерватные капли не способны к самовоспроизводству и саморегуляции, поэтому их нельзя отнести к биологическим системам. Эксперименты с коацерватами показали, что скорость, с которой они поглощают вещества из окружающей среды, может быть различна и зависит от химической организации и пространственной структуры каждой конкретной капли. Поэтому две разновидности коацерва-тов в одном и том же растворе будут вести себя по-разному. Данные эксперименты являются косвенным подтверждением того обстоятельства, что на этой стадии предбиологичес-кой эволюции вполне мог происходить отбор коацерватов в зависимости от характера их взаимодействия с окружающей средой. Третий этап возникновения жизни связан с формированием у органических соединений способности к самовоспроизводству. Началом жизни следует считать возникновение стабильной самовоспроизводящейся органической системы с постоянной последовательностью нуклеотидов. Только после возникновения таких систем можно говорить о начале биологической эволюции. Одну из версий перехода от предбиологической к биологической эволюции предлагает немецкий ученый М. Эйген. Согласно его гипотезе возникновение жизни объясняется взаимодействием нуклеиновых кислот и протеинов. Нуклеиновые кислоты являются носителями генетической информации, а протеины служат катализаторами химических реакций. Нуклеиновые кислоты воспроизводят себя и передают информацию протеинам. Возникает замкнутая цепь – гиперцикл, в котором процессы химических реакций самоускоряются за счет присутствия катализаторов. В гиперциклах продукт реакции одновременно выступает и катализатором, и исходным реагентом. Подобные реакции называются автокаталитическими. Другой теорией, в рамках которой можно объяснить переход от предбиологической эволюции к биологической, является синергетика (8.2). Закономерности, открытые синергетикой, позволяют прояснить механизмы возникновения органической материи из неорганической в терминах самоорганизации через спонтанное возникновение новых структур в ходе взаимодействия открытой системы с окружающей средой. 5.3. Основные этапы эволюции органического мира Изучением основных этапов эволюции живого занимается палеонтология – наука об ископаемых организмах. Поскольку биологической эволюции предшествовала длительная предбиологическая эволюция, отдельные этапы биогенеза современная наука увязывает с геогенезом. В геологической истории Земли выделяют различные эры, в которые происходили значительные геологические преобразования, перераспределялись суша и море, менялся климат и т. п. Кроме того, после возникновения жизни каждая эра характеризовалась своеобразием растительного и животного мира. Геологические эры: • катархей (5 млрд – 3,5 млрд лет назад); • архей (3,5 млрд – 2,6 млрд лет назад); • протерозой (2,6 млрд – 570 млн лет назад); • палеозой (570 млн – 230 млн лет назад); • мезозой (230 млн – 67 млн лет назад); • кайнозой (67 млн лет назад – до настоящего времени). Возраст Земли – около 5 млрд лет. Жизнь на нашей планете возникла в архее, примерно 3,5 млрд лет назад. В это время появляются первые живые клетки – прокариотыг. Прокариоты – это простые организмы, способные к быстрому размножению, легко приспосабливающиеся к изменяющимся условиям окружающей среды. Характерное свойство прокариотов – отсутствие выраженного ядра. Эти организмы были анаэробными, т. е. могли жить без кислорода (напомним, что первичная атмосфера Земли состояла из смеси гелия, неона, аргона, водорода, метана и азота). Эти организмы были гетеротрофами, т. е. все необходимые для жизни вещества получали в готовом виде из окружающей среды. Однако истощение первичного «органического бульона» потребовало радикального изменения способов питания. На этом этапе биогенеза преимущество имели те организмы, которые могли получить большую часть необходимой для жизни энергии за счет солнечного излучения. Световая энергия ускоряла химические реакции, в ходе которых синтезировались необходимые для жизни вещества. Процесс выработки необходимых веществ с помощью поглощения солнечной энергии называется фотосинтезом. Таким образом, на смену гетеротрофам пришли автотрофыг – живые организм^! которые существуют за счет солнечной энергии и вырабатывают необходимые для жизни вещества самостоятельно. Первыми автотрофами б^1ли цианеи, затем зеленые водоросли. Фотосинтез сыграл существенную роль в биогенезе, способствовал общему ускорению эволюции органической материи. На этом этапе преимущество получили аэробные организмы, которые способны к жизни только в присутствии кислорода. Появление автотрофных организмов серьезно повлияло на состав земной атмосферы. Дело в том, что в процессе своей жизнедеятельности автотрофные организмы выделяют большое количество кислорода и благодаря этому первичная атмосфера Земли постепенно преобразовалась во вторичную, сформировался озоновый слой, защищающий живые организмы от смертоносного действия ультрафиолетовых лучей, изменился состав воды в водоемах и т. п. Таким образом, биогенез оказал существенное влияние на эволюцию нашей планеты и гармонично «встроился» в гео-генез, став его продолжением и развитием. Считается, что нынешнее содержание кислорода в атмосфере (21 %), б^1ло достигнуто в палеозое, 250 млн лет назад, однако этот процесс начался уже в архее. В протерозое (1,8 млрд лет назад) появляются эукарио-тыг – живые организмы, клетки которых содержат выраженное ядро. Эукариоты более соответствовали новым условиям. В отличие от прокариотов ДНК эукариотов собрана в хромосомы и способна воспроизводиться без значительных изменений. Существуют две основные гипотезы происхождения эукариотов: аутогенная и симбиотическая. Согласно аутогенной гипотезе эукариоты возникли путем усложнения слабоструктурированных клеток, подобных прокариотам. Сторонники симбиотической гипотезы считают, что эукариоты появились как результат симбиоза нескольких прокариотных клеток, геномы которых объединились в новую целостность. Примерно 1 млрд лет назад произошло разделение эука-риотов на растительные и животные клетки. Структурные различия между растительной и животной клетками невелики. Более существенными являются различия в способах получения необходимых для жизни питательных веществ. В дальнейшем растительные клетки эволюционировали в сторону использования фотосинтеза для обеспечения себя энергией, а животные клетки – в направлении совершенствования способов передвижения (именно способность к передвижению дает возможность животным организмам искать себе пищу). Известны организмы, которые занимают промежуточное положение между растениями и животными. Например, простейший одноклеточный организм эвглена зеленая питается как растение, а передвигается как животное. Эвглену зеленую рассматривают как переходное звено между растительным и животным царствами. Другой пример – растения, которые по способу питания аналогичны животным: растения-паразиты повилика и хмель или насекомоядные растения мухоловка и росянка. Кроме того, существуют совершенно неподвижные животные организмы – моллюски. Следующим существенным шагом в биологической эволюции стало появление 900 млн лет назад полового размножения. Механизм полового размножения заключается в слиянии и последующем распределении генетического материала двух организмов. Половое размножение значительно повышает видовое разнообразие, что, с одной стороны, позволяет живым организмам лучше приспособиться к условиям окружающей среды, а с другой – значительно ускоряет эволюционный процесс. Появление первых многоклеточных организмов произошло примерно 800 млн лет назад. Многоклеточный организм обладает развитыми органами и тканями, т. е. более дифференцирован по сравнению с одноклеточным. Первыми многоклеточными были губки, членистоногие и кишечнополостные. В палеозое, 500 млн – 440 млн лет назад появляются первые крупные (10–11 м) плотоядные животные и первые небольшие по размерам (около 10 см) позвоночные. Примерно 410 млн лет назад живые организмы начинают завоевывать сушу. Наземные растения получили значительные преимущества перед водными, поскольку процессы фотосинтеза на суше протекают интенсивнее, чем в воде. Первые наземные растения – псилофиты – занимали промежуточное положение между наземными сосудистыми растениями и водорослями. Вслед за растениями на сушу перебрались и животные. Первые наземные животные напоминали современных скорпионов, они были двоякодышащими, т. е. приспособленными к дыханию и в воде, и на суше. От двоякодышащих существ впоследствии произошли сначала земноводные, а затем и сухопутные позвоночные животные. Первыми полностью приспособленными для жизни на суше животными организмами стали древние рептилии, которые по виду напоминали современных ящериц. Примерно в этот же период возникли и насекомые. Около 300 млн лет назад насекомые начинают летать и затем на протяжении почти 100 млн лет господствовали в воздухе. В мезозое (230 млн – 67 млн лет назад) происходит дальнейшая эволюция животного и растительного мира. Постепенно у наземных растений формируется компактное тело, происходит его дифференциация на корень, стебель, листья, совершенствуются покровные ткани, развивается проводящая система, обеспечивающая растения водой и питательными веществами, изменяются способы размножения. Для целей размножения на суше больше подходят споры и семена, поэтому эволюционное преимущество получили те растения, которые размножались именно таким способом. Дальнейшая эволюция растительного мира связана с совершенствованием семян. Животное царство также развивается. В начале мезозоя рептилии полностью завоевали сушу, поэтому мезозойскую эру часто называют эрой пресмыкающихся. Древние рептилии постепенно осваивают все новые и новые места обитания, и все более удаляются от воды. Постепенно в ходе эволюции возникали плавающие, летающие и передвигающиеся по суше, хищные и растительноядные рептилии. 195 млн – 137 млн лет назад от древних летающих пресмыкающихся произошли первые птицы, которые сочетали в себе признаки птиц и рептилий. 230 млн – 195 млн лет назад появились первые млекопитающие. Кайнозой (67 млн лет назад – настоящее время) – время господства млекопитающих, птиц, насекомых и цветковых растений. В конце мезозойской эры произошло сильное похолодание, которое привело к гибели значительного числа видов растений и общему сокращению пространств, занятых растительностью. В этих условиях эволюционное преимущество получили покрытосеменные растения, у которых процесс размножения не только не зависит от наличия водной среды, но и возможен в новых климатических условиях. Покрытосеменные – цветковые – растения и сейчас составляют большую часть царства растений. Безусловно, в течение 67 млн лет кайнозойской эры не раз происходили изменения растительного царства, но цветковые растения по-прежнему сохраняют господство. Похолодание в конце мезозойской эры и гибель многочисленных видов растений привели к вымиранию сначала растительноядных, а затем и питавшихся ими хищных динозавров. В условиях похолодания значительное эволюционное преимущество получили теплокровные животные – млекопитающие и птицы. На протяжении миллионов лет происходит появление новых видов живых существ, которые распространяются по поверхности Земли, занимая сушу, воздух и водную среду. Примерно 8 млн лет назад начали формироваться современные семейства млекопитающих. В этот же период появились разнообразные виды приматов и тем самым сложились предпосылки для начала антропогенеза. 2–3 млн лет назад началось очередное вымирание лесов. Одна из групп антропоидных обезьян постепенно стала осваивать новые огромные открытые пространства. Предположительно именно от этих обезьян произошли люди (6.3). Сейчас жизнь на Земле представлена клеточными и до-клеточными организмами. Доклеточные живые организмы – вирусы и фаги. Клеточные организмы традиционно разделяют на четыре царства: микроорганизмы, грибы, растения и животные. Основными группами органической природы считаются растения и животные. В настоящее время царство растений представлено более чем 500 тыс. видов, царство животных – более 1,2 млн видов. 5.4. Сущность и основные признаки живых систем В классической биологии соперничали две противоположные позиции, объяснявшие сущность живого принципиально различным образом, – редукционизм и витализм. Сторонники редукционизма считали, что все процессы жизнедеятельности организмов можно свести к совокупности определенных химических реакций. Термин «редукционизм» происходит от латинского слова reductio – отодвигать назад, возвращать. Идеи биологического редукционизма опирались на представления вульгарного механистического материализма, получившего наибольшее распространение в философии XVII–XVIII вв. Механистический материализм все процессы, происходящие в природе, объяснял с помощью законов классической механики. Адаптация механистической материалистической позиции к биологическому познанию привела к формированию биологического редукционизма. С точки зрения современного естествознания, редукционистское объяснение не может быть признано удовлетворительным, поскольку выхолащивает саму сущность живого. Тем не менее в биологии XVIII в. редукционизм получил широкое распространение. Противоположностью редукционизма является витализм, сторонники которого объясняют специфику живых организмов присутствием в них особой жизненной силы. Термин «витализм» происходит от латинского слова vita – жизнь. Философской базой витализма является идеализм. Сторонники витализма использовали ограниченность редукционистской парадигмы как аргумент в пользу собственной правоты. Однако витализм не прояснял специфики и механизмов функционирования живого, сводя все отличия органического от неорганического к действию таинственной и непознаваемой «жизненной силы». Несмотря на то что витализм не объяснял сущности живого, в классической биологии было немало сторонников этой позиции. Современная биология основными свойствами живого считает самостоятельный обмен веществ, раздражимость, подвижность, рост, способность к размножению и приспособляемость к среде. По совокупности этих свойств живое отличается от неживого. Биологические системыг – это целостные открытые системы, постоянно обменивающиеся с окружающей средой веществом, энергией и информацией и способные к самоорганизации. Живые системы активно реагируют на изменения окружающей среды, приспосабливаясь к новым условиям. Биологические системы способны к самовоспроизводству, а следовательно, к сохранению и передаче генетической информации последующим поколениям. Отдельные качества живого могут быть присущи и неорганическим системам, однако ни одна неорганическая система не обладает всей совокупностью перечисленных выше свойств. Существуют переходные формы, которые объединяют в себе свойства живого и неживого, например вирусы. Слово «вирус» образовано от латинского virus – яд. Вирусы были открыты в 1892 г. русским ученым Д. Ивановским. С одной стороны, они состоят из белков и нуклеиновых кислот и способны к самовоспроизводству, т. е. имеют признаки живых организмов, но с другой стороны, вне чужого организма или клетки они не проявляют признаков живого – не имеют собственного обмена веществ, не реагируют на раздражители, не способны к росту и размножению. По своей структуре вирусы очень похожи на гены, исследования современной молекулярной биологии подтвердили это обстоятельство. В связи с этим даже обсуждается вопрос об эволюционной роли вирусов, которые иногда называют «взбесившимися генами» (5.6). Все живые существа на Земле имеют одинаковый биохимический состав: 20 аминокислот, 5 азотистых оснований, глюкоза, жиры. Следует отметить, что современной органической химии известно более чем 100 аминокислот. По-видимому, такое небольшое число соединений, образующих все живое, является результатом отбора, который проходил на этапе предбиологической эволюции. Белки, из которых состоят живые системы, представляют собой высокомолекулярные органические соединения. В каждом конкретном белке порядок аминокислот всегда один и тот же. Большинство белков выступает в качестве ферментов – катализаторов химических реакций, происходящих в живых системах. 5.5. Уровни организации живой природы Жизнь на Земле представляет собой целостную систему, состоящую из различных уровней. Выделяют четыре основных уровня организации живой материи: • молекулярно-генетический; • онтогенетический; • популяционно-видовой; • биогеоценотический. Единицей молекулярно-генетического уровня выступает ген – структурный элемент молекулы дНк, несущий наследственную информацию, передаваемую от поколения к поколению, а элементарным явлением – воспроизводство генетических кодов по принципу матрицы (5.6). Единицей онтогенетического уровня организации живого выступает отдельная особь, а элементарным явлением – онтогенез. Биологическая особь может быть как одноклеточным, так и многоклеточным организмом, однако в любом случае она представляет собой целостную, самовоспроизводящуюся систему. Онтогенез – процесс индивидуального развития организма от рождения через последовательные морфологические, физиологические и биохимические изменения до смерти, процесс реализации наследственной информации. Термин «онтогенез» был введен в науку немецким биологом Э. Геккелем, который сформулировал закон о повторении в онтогенезе – индивидуальном развитии организма – основных этапов филогенеза – развития вида, к которому принадлежит данный организм. «Онтогения, – писал Э. Геккель, – является краткой и быстрой рекапитуляцией филогении, обусловленной физиологическими функциями наследственности (размножения) и приспособления (питания). Органический индивидуум повторяет в быстром и кратком ходе своего индивидуального развития самые важные из изменений форм, через которые прошли его предки в медленном и длительном ходе их палеонтологического развития согласно законам наследственности и приспособления». Эта закономерность называется основным биогенетическим законом. Единая теория онтогенеза пока не создана, поскольку не прояснены причины и факторы, определяющие индивидуальное развитие организма, и т. п. Сейчас можно говорить лишь о том, что онтогенез является следствием реализации сложной согласованной программы развертывания наследственных свойств организма. Единица популяционно-видового уровня – популяция, а элементарное явление – направленное изменение ее генетического состава. Популяция – это совокупность особей одного вида, относительно изолированная от других групп этого же вида, занимающая определенную территорию, воспроизводящая себя на протяжении длительного времени и обладающая общим генетическим фондом. Популяция рассматривается как целостная открытая система, все элементы которой взаимодействуют друг с другом и с окружающей средой. Термин «популяция» был введен одним из основателей генетики В. Иогансеном. Популяции существуют на протяжении длительного времени и способны к самостоятельному эволюционному развитию, их рассматривают в качестве «атомов» эволюционного процесса. Изучением популяций занимается популяционная биология. Кроме того, популяции выступают объектом рассмотрения синтетической теории эволюции, в рамках которой дается объяснение эволюционных механизмов в живой природе (5.7). Совокупность совместно обитающих и взаимодействующих между собой популяций растений, животных, грибов и микроорганизмов, населяющих определенную территорию, называется биоценозом. Биоценозы являются составным компонентом более сложной системы биогеоценоза. Биогеоценоз выступает единицей биогеоценотического уровня. Элементарное явление этого уровня – переходы биогеоценозов из одного состояния динамического равновесия в другое. Биогеоценозы иначе называют экологическими системами. Термин «биогеоценоз» был введен русским ученым В.Н. Сукачевым в 1940 г., а термин «экологическая система» – английским ботаником А. Тенсли в 1935 г. Биогеоценоз – сложная динамическая система, представляющая собой совокупность биотических (популяции различных видов растений, животных и микроорганизмов) и абиотических (атмосфера, почва, вода, солнечная энергия) элементов, связанных между собой обменом вещества, энергии и информации. Биогеоценоз – целостная развивающаяся система, взаимодействия в которой описываются принципами прямых и обратных связей. Равновесие экологической системы поддерживается за счет внутренних сил самой этой системы. Поэтому о биогеоценозах говорят как об открытых системах, способных к самоорганизации в результате обмена энергией, веществом и информацией со средой, т. е. с другими биогеоценозами. Закономерности развития биогеоценозов можно описать в терминах синергетики (7.2). Биогеоценоз – устойчивая система, которая может существовать на протяжении длительного времени. Равновесие в живой системе динамично, т. е. представляет собой постоянное движение вокруг определенной точки устойчивости. для стабильного функционирования живой системы необходимо наличие обратных связей между ее управляющей и исполняющей подсистемами. Такой способ поддержания динамического равновесия называют гомеостазом. Гомеостаз в живых системах можно рассматривать по аналогии с управляющими процессами в кибернетике (7.1). Чем более многообразна экологическая система, чем больше число составляющих ее видов, тем она более жизнеспособна, устойчива во времени и пространстве. При благоприятных условиях экологические системы способны усложнять свою структурную организацию, повышая сопротивляемость разрушающим воздействиям. Но даже самые сложные и многообразные биогеоценозы не вечны. Внезапные резкие изменения внешних условий снижают устойчивость экологической системы и вызывают нарушение ее внутренней структуры. Выпадение даже одного из элементов биогеоценоза может повлечь за собой изменения в других и вызвать необратимое нарушение равновесия и распад экологической системы. Именно поэтому для нормальной жизнедеятельности биогеоценоза необходимо сохранение всех или подавляющего числа его элементов. Нарушение динамического равновесия между различными элементами биогеоценоза, связанное с массовым размножением одних видов и сокращением или исчезновением других, приводящее к изменению качества окружающей среды, называют экологической катастрофой. Развитие экологических систем, не связанное с серьезным изменением окружающей среды, представляющее собой последовательную смену биологических сообществ, называется сукцессией. В заключение следует отметить, что каждый уровень организации живого характеризуется собственными свойствами и закономерностями, а в целом вся иерархия живой природы позволяет представить ее как целостную самоорганизующуюся систему, находящуюся в постоянном взаимодействии с неорганической материей. 5.6. Генетика и молекулярная биология Генетика – наука, изучающая механизмы наследственности и изменчивости в живой природе. Слово «генетика» происходит от греческого genesis – происхождение. Основы этой научной дисциплины были заложены австрийским ученым Г. Менделем, который открыл законы наследственности. Г. Мендель показал, что наследование признаков происходит дискретно. Ученый скрещивал гладкий и морщинистый сорта гороха, в результате в первом поколении он получал только гладкие семена, а во втором – четверть морщинистых семян. Анализируя эти экспериментальные данные, Г. Мендель пришел к выводу, что в зародышевую клетку поступает информация от обоих родителей, но в первом поколении проявляется только один, доминантный признак, а во втором – доминантные и рецессивные признаки распределяются в пропорции 3:1. Это явление было названо расщеплением признаков. Результаты экспериментов Г. Менделя опровергли тезис о том, что рецессивные признаки живого организма должны постепенно стираться в череде поколений. Открытые закономерности свидетельствовали: рецессивные мутации не исчезают бесследно, а сохраняются в генетическом фонде популяции и проявляются через поколение. Значение открытия Г. Менделя, сделанного еще в XIX в., было по достоинству оценено только в XX в., который не без основания называют веком генетики. В 1900 г. законы наследственности были вновь открыты сразу тремя учеными – X. де Фризом (Голландия), К. Кор-ренсом (Германия) и Э. Чермаком (Австрия). Для объяснения выявленных в ходе экспериментов закономерностей X. де Фриз предложил теорию мутаций. Мутация – это внезапное изменение наследственных структур, вызванное естественным или искусственным путем. Термин «мутация» происходит от латинского mutatio – изменение. Как показали эксперименты, мутационный признак не исчезает, а постепенно накапливается в генофонде популяций, что является основой изменчивости в живой природе. Х. де Фриз предположил, что новые виды возникают именно в результате мутаций. Поначалу голландский ученый противопоставил мутации естественному отбору, заявив, что «значение отбора ограничено, эволюция идет путем резких скачков, мутаций». Однако позже Х. де Фриз согласился, что именно естественный отбор способствует закреплению полезных мутаций и, следовательно, процессу эволюции. После открытия Х. де Фриза в течение 20–30 лет в генетике лавинообразно накапливался новый эмпирический материал и появлялись объясняющие его теоретические гипотезы. В 1920-е гг. А. Вейсманом, Т. Х. Морганом, А. Стер-тевантом, Г. дж. Меллером была разработана хромосомная теория наследственности, которая проясняла строение хромосом, порядок расположения генов – носителей наследственной информации, т. е. механизмы и причины мутационных изменений. Г. дж. Меллер, в частности, показал, что мутации могут вызываться рентгеновскими лучами, воздействием химических веществ, резкими изменениями температуры и т. п. В 1940-е гг. была открыта нуклеиновая природа гена и выяснена роль нуклеиновых кислот в хранении и передаче наследственной информации. Этими исследованиями занималась школа американского генетика Т. Х. Моргана. На их основе возникла новая научная дисциплина – молекулярная биология, объединившая биохимию и генетику. В 1944 г. американский биохимик О. Эвери и его команда установили, что носителем наследственной информации является ДНК, а в 1953 г. Ф. Крик и Д. Уотсон расшифровали ее структуру. Оказалось, что молекула дНк состоит из двух полинуклеиновых цепей, каждая из которых выступает в качестве матрицы для синтеза новых цепей. Выяснилось также, что именно свойство к самоудвоению молекул ДНК является основой механизма наследственности. В последующие десятилетия учеными была установлена зависимость синтеза белков от состояния генов, осуществлен искусственный синтез гена, расшифрована аминокислотная последовательность многих белков и т. п. Ко второй половине XX в. в генетике был накоплен колоссальный эмпирический и теоретический материал. Наука вплотную приблизилась к разгадке одной из величайших тайн – самовоспроизводства живого. Выяснение молекулярных механизмов передачи генетической информации открыло совершенно новые возможности для практического применения этих знаний. Воспроизводство всего живого определяется синтезом белков при помощи нуклеиновых кислот ДНК (дезоксири-бонуклеиновой) и РНК (рибонуклеиновой). Как уже говорилось, в образовании белков участвует 20 аминокислот из 100 известных современной органической химии. Носителями генетической информации являются молекулы ДНК, которые находятся в хромосомах ядер клеток. ДНК состоит из двух спаренных полинуклеотидных цепочек, закрученных в спираль. Звеньями молекулы ДНК выступают нуклеотиды. Нуклеотид – это соединение азотистого основания, сахара и остатка фосфорной кислоты. В состав молекулы ДНК может входить один из четырех типов нук-леотидов, специфика которых определяется азотистым основанием: аденин (А), тимин (Т), цитозин (С), гуанин (G). Молекулу ДНК можно представить в виде огромного текста, состоящего из последовательности четырех букв А, Т, С, G в разных сочетаниях. Подобная модель ДНК была предложена в 1953 г. американским биохимиком Дж. Уотсоном и английским биофизиком Ф. Криком. А в 1962 г. эти ученые и биофизик М. Уилкинс получили Нобелевскую премию за расшифровку генетического кода. Цепочки ДНК соединены между собой водородными связями, причем аденин всегда связывается с тимином, а цито-зин с гуанином. Такая связь структурно соответствующих друг другу азотистых оснований называется принципом комплиментарности. Для кодирования одной аминокислоты требуется сочетание трех нуклеотидов. Участок молекулы ДНК, служащий матрицей для синтеза одного белка, называется геном. Изменение последовательности нуклеотидов в цепи ДНК приводит к мутациям. Механизм воспроизводства живого представляет собой матричный синтез белков, который происходит в несколько этапов. Сначала разрываются водородные связи двойной молекулы ДНК и образуются одинарные цепи, выступающие в виде матрицы. Затем каждая из нитей по своей поверхности строит новую. Новые цепи пристраиваются к старым по принципу комплиментарности. В результате формируются две идентичные молекулы ДНК. Существенную роль в процессе синтеза белков играют молекулы РНК. Молекула РНК представляет собой одноце-почечную нить, состоящую из нуклеотидов. В состав молекулы РНК также входят четыре азотистых основания: три из них – аденин, цитозин и гуанин – сходны с азотистыми основаниями, входящими в состав молекулы ДНК, а четвертое – урацил (U) – отличается. С молекулы ДНК генетический код переносится на молекулу информационной РНК, которая представляет собой копию части ДНК, т. е. одного или нескольких рядом расположенных генов. Синтез белка осуществляется в рибосомах на основе генетического кода информационной РНК. Аминокислоты, необходимые для синтеза белка, доставляются в рибосому с помощью транспортной РНК. Весь процесс синтеза белка занимает не более 6 мин. Механизм матричного синтеза белков представляет собой не простое копирование, а копирование с частичными изменениями, что делает возможным как наследование признаков, так и дискретные отклонения от исходного состояния. Одной из важнейших и интереснейших задач, стоящих перед современной наукой, является расшифровка генома человека Геном– это совокупность генов, сосредоточенных в единичном наборе хромосом данного организма. В 1988 г. для решения этой задачи по инициативе Дж. Уотсона была создана международная организация «Геном человека». По разным оценкам в состав генома человека входит от 50 тыс. до 100 тыс. генов. Успех даже на первом этапе расшифровки (определение последовательности нуклеотидных пар) приведет к пониманию причин и механизмов различных наследственных, инфекционных и т. п. заболеваний и позволит выработать эффективные методы их лечения. Новые возможности открывает генная инженерия. Генная инженерия, или технология рекомбинантных ДНК, сложилась в 1970-е гг. на основе синтеза методов молекулярной биологии и генетики. Генная инженерия – это раздел молекулярной биологии, в котором изучаются возможности целенаправленного конструирования новых биологических структур с заранее заданными свойствами за счет прямого вмешательства в генетический аппарат и комбинирования природного или созданного искусственно генетического материала. В последнее время в генной инженерии исследуется целый комплекс вопросов, связанных с непостоянством генома. Оказалось, что в хромосомах и цитоплазме клетки существует целый ряд биохимических соединений, которые находятся в хаотичном состоянии и способны к взаимодействию со структурами нуклеиновых кислот другого организма. Эти биохимические соединения были названы плазмида-ми. Плазмиды способны включаться в клетку реципиента и активизироваться под действием определенных внешних факторов. Переход из латентного состояния в активное означает соединение генетического материала донора с генетическим материалом реципиента. Если полученная конструкция работоспособна, то начинается синтез белка. Понятно, что, используя данный механизм, можно изменить ДНК, запрограммировав ее на синтез определенных белков. На основе этой технологии в 1978 г. был синтезирован инсулин – белок, позволяющий бороться с диабетом. Мигрирующие генетические элементы обнаруживают значительное сходство с вирусами. Открытие явления трансдук-ции генов, т. е. переноса генетической информации в клетки растений и животных с помощью вирусов, включающих в себя часть генов исходной клетки хозяина, дает основание предполагать, что вирусы и сходные с ними биохимические образования занимают особое место в эволюции. Некоторые ученые высказывают мнение, что мигрирующие биохимические соединения способны вызвать даже более серьезные изменения в геномах клеток, чем мутации. Если это предположение окажется верным, то придется существенно пересмотреть нынешние представления о механизмах эволюции. Сейчас выдвигаются гипотезы о значительной роли вирусов в смешении генетической информации различных популяций, возникновении скачков эволюционного процесса, одним словом, речь идет о важнейшей роли вирусов в эволюционном процессе. Безусловно, генная инженерия дает ключ к решению многочисленных научных, медицинских и даже производственных проблем, стоящих перед человечеством, в частности созданию организмов с заранее заданными свойствами, лечению наследственных заболеваний путем «пересадки» отдельных генов (генная терапия), созданию безопасных вакцин и высокоэффективных лекарственных препаратов, объяснению иммуногенеза и канцерогенеза, что позволит человечеству бороться с заболеваниями, которые пока считаются неизлечимыми (онкологические заболевания, СПИД и т. п.). Кроме того, новые данные молекулярной биологии и возможности генной инженерии позволят значительно увеличить продолжительность жизни человека. При этом развитие генной инженерии связано с опасностью, контуры и масштабы которой пока трудно оценить. Во-первых, могут быть созданы модифицированные организмы с нежелательными или неожиданными свойствами. Во-вторых, внедрение генных технологий уже привело к созданию многочисленных рекомбинантных микроорганизмов, распространение которых спровоцировало появление новых заболеваний. В-третьих, последствия генной терапии (непосредственного вмешательства в генотип человека), которая проводится уже на протяжении нескольких лет, также пока неизвестны. Ученые смогут с уверенностью говорить о том, как поведет себя введенный в клетку ген через 10–20 лет. В-четвертых, существует реальная опасность использования продуктов генной инженерии в военных целях. Именно поэтому любые теоретические исследования и особенно практические эксперименты в этой области требуют осмотрительности, серьезной подготовки и жесткой регламентации. Тем не менее Федерация европейских микробиологических обществ в Меморандуме 1996 г. заключила: «При осмотрительном применении генных технологий польза от них сильно перевесит риск отрицательных последствий; технологии конструирования рекомбинантных ДНК внесут существенный вклад в здравоохранение, в развитие устойчивого сельского хозяйства, в производство пищи, в очистку окружающей среды». О практических возможностях современной биологической науки свидетельствуют также опыты с клонированием, результаты которых обнародованы в последние годы. Термин «клон» происходит от греческого klon – ветка, побег. Клонирование – это точное (на генетическом уровне) воспроизведение живого объекта в п-ом количестве копий. При клонировании гены донорской особи сохраняются и в полном объеме передаются рождающемуся потомству. В этом случае гены доноров-родителей и клонов-детей не просто схожи, как в случае полового размножения, а полностью идентичны. Случаи естественного клонирования известны давно. Это, например, рождение однояйцовых близнецов, которые несут одинаковые наборы генов. Искусственное клонирование растений черенками, почками или клубнями не только известно, но и используется уже более 4 тыс. лет. Возможность искусственного клонирования животных появилась только в XX в. В 1950-е гг. американские ученые начали проводить эксперименты с клонированием эмбрионов амфибий, используя метод пересадки ядер эмбриональных клеток в лишенные ядер (энуклеированные) яйцеклетки. В 1970-е гг. начались опыты по клонированию мышей, которые, однако, оказались не слишком удачными – эмбрионы клонированных животных погибали на ранних стадиях. Первые сведения об успешном клонировании животных появились еще в 1980-е гг. Это были эксперименты на кроликах, свиньях, коровах и овцах. В 1993–1995 гг. английский ученый Я. Уилмут и его группа, работавшая в Эдинбургском биологическом институте, методом клонирования получили пять ягнят (самок). Две клонированных особи погибли вскоре после рождения, третья – в возрасте 10 дней, а две оставшиеся достигли 8-9-месячного возраста. Эти эксперименты, однако, не произвели такой сенсации, как появление весной 1997 г. овечки Долли. Механизм клонирования Долли выглядел следующим образом. Из овец породы «шотландская черномордая» были выделены яйцеклетки, которые поместили в искусственную питательную среду. Затем из клеток удалили собственные ядра и «наполнили» их генетическим материалом клонируемой особи-донора. Для этой цели использовались клетки молочной железы шестилетней беременной овцы породы «финский дорсет». Затем зародыши культивировали в перевязанном яйцеводе овцы-реципиента. Фенотипически Долли оказалась полностью сходной с овцой породы «финский дорсет», которая выступала донором, и сильно отличалась от овцы-реципиента породы «шотландская черномордая». После этого успеха некоторые ученые заговорили о том, что технология, результатом которой стало появление овечки Долли, потенциально может быть применима и к человеку. Эта информация вызвала бурную дискуссию, которая обнаружила, что в связи с возможностью клонирования человека возникают многочисленные этические и юридические вопросы. Дело в том, что из 277 опытов, проведенных с эмбрионами овцы, успешным оказался только один, а значит, клонирование человека по такой технологии не страхует от появления уродов, причем вероятность их конструирования составляет как минимум 276: 1. Один этот факт может служить основанием для моратория на эксперименты с клонированием человека, поскольку возможные отрицательные последствия таких опытов значительно превышают положительные. Теоретически клонирование человека может иметь положительные стороны: решение проблемы бесплодия, создание банка запасных клеток и тканей и т. п. Но они минимальны на фоне огромного риска получения негативных результатов, которые могут нанести колоссальный урон здоровью, благополучию и безопасности людей. Клонирование человека, безусловно, открывает огромные возможности, которые даже трудно представить в полном объеме, но ставит и новые вопросы, поиск ответов на которые требует философского осмысления и в некоторых случаях даже политической воли. Интуитивные решения в сфере клонирования человека оказываются недостаточными, поскольку от содержания ответов напрямую зависит эволюционное будущее человечества. В этой ситуации большинство ученых и политиков говорят о необходимости ввести запреты на эксперименты по клонированию человека. Так, в октябре 1997 г., практически сразу после обнародования результатов по клонированию овечки Долли, Федерация научных обществ экспериментальных биологов США объявила пятилетний мораторий на эксперименты по клонированию человека. Клонирование людей законодательно запрещено в Великобритании, США и России. Однако при этом в апреле 2002 г. информационные агентства мира сообщили, что первых клонированных человеческих существ могут родить две женщины в бывшем СССР и одна гражданка неназванной исламской страны, которые беременны клонами на шестой-девятой неделе. Эти сведения были получены от итальянского специалиста по искусственному оплодотворению С. Антинори. Этот факт, даже если он не подтвердится, свидетельствует, что борьба сторонников и противников клонирования человека продолжается. 5.7. Синтетическая теория эволюции Трудности, с которыми столкнулась классическая теория эволюции, в частности при объяснении явления наследственности, были преодолены путем синтеза эволюционной теории Ч. Дарвина и генетики Г. Менделя. В результате в 1930-е гг. была создана синтетическая теория эволюции, ставшая не только ядром популяционной генетики, но и позволившая сформировать единую систему всего современного биологического знания. Создание синтетической теории эволюции связывают с именами С. Четверикова, Р. Фишера, С. Райта, Дж. Холдейна, Н. Дубинина. В отличие от классической эволюционной концепции Ч. Дарвина, рассматривающей в качестве единицы эволюции вид, синтетическая теория эволюции утверждает, что элементарной эволюционной структурой выступает популяция (5.5). Именно популяция обладает теми свойствами самоорганизующейся целостной системы, которые необходимы для наследственных изменений. Устойчивое изменение генотипа популяции рассматривается в качестве элементарного явления эволюционного процесса. «Единицей» наследственности выступает ген – участок молекулы ДНК, отвечающий за развитие определенных признаков организма. Основным механизмом эволюционного процесса является отбор организмов с полезными, выгодными для приспособления к среде мутациями. Наследственные изменения происходят под действием ряда эволюционных факторов, среди которых основными являются: • мутационный процесс – мутационные изменения, поставляющие материал для эволюции; • популяционные волны – колебания численности популяции вокруг некоторого среднего уровня; • изоляция – обособление популяции для закрепления нового признака; • естественный отбор – ведущий фактор эволюции – выживание наиболее приспособленных особей и рождение ими здорового потомства. Неосновными эволюционными факторами считаются частота смены поколений в популяциях, темпы мутационных процессов и их характер и т. п. Все эволюционные факторы действуют как в комплексе, так и по отдельности, вызывая изменение генетического состава популяции. Мутации – это изменения наследственных свойств организмов внутри популяции, возникающие естественным или искусственным путем и поставляющие основной материал для эволюции. Факторы, вызывающие мутации, называются мутагенами. Мутагенами выступают температурный режим, действие отравляющих веществ, радиации, особенности питания и т. п. Современная молекулярная биология к числу наиболее опасных мутагенов относит вирусы (5.6). Мутации появляются случайно, большинство из них либо нейтральны, либо вредны. Вредные мутации часто вызывают гибель организма, причем, как правило, на достаточно ранних этапах онтогенеза. Вредные мутации, которые не привели к летальному исходу, элиминируются в ходе естественного отбора. Благоприятные мутации крайне редки, но именно они дают организму эволюционное преимущество. Появление полезной мутации позволяет живому организму лучше приспособиться к окружающей среде, более успешно вести борьбу за существование, оставлять жизнеспособное и многочисленное потомство. Поэтому случайные благоприятные изменения постепенно накапливаются в популяции, закрепляются в ряде поколений и способствуют эволюции вида. Волны численности, которые иногда называют «волнами жизни», определяют колебания численности популяции вокруг некоторой средней величины. Современные исследования показали, что наиболее благоприятны для появления новых свойств и возникновения новых видов популяции среднего размера. В слишком многочисленных популяциях наследственным изменениям труднее появиться. В слишком малочисленных популяциях появление новых признаков зависит от случайных процессов, которые могут резко изменить количество и без того редко встречающихся благоприятных мутаций. Изоляция – еще один фактор эволюционного процесса, необходимый для того, чтобы популяция не могла скрещиваться с другими группами организмов и обмениваться с ними генетической информацией. Обособление популяции позволяет закрепить дифференциацию ее генофонда. На необходимость обособления для образования новых видов организмов указывал еще Ч. Дарвин в классической эволюционной теории (2.5), однако он не смог дать объяснения этому явлению. Целесообразность в живой природе является следствием естественного отбора, который выступает движущей силой и ведущим фактором эволюции. Естественный отбор – следствие взаимодействия популяции с окружающей средой. Отбор действует на всех этапах развития живого организма, ему подвергаются все без исключения свойства. В классической эволюционной теории естественный отбор определялся как процесс выживания наиболее приспособленных организмов. Современная эволюционная биология делает акцент на другой стороне этого явления. Естественный отбор теперь понимается как устранение от размножения тех особей, которые менее приспособлены к условиям окружающей среды. В связи с этим английский биолог Дж. Хаксли предложил термин «уничтожение неприспособленных», который, с его точки зрения, точнее характеризует механизм естественного отбора. Перечисленные выше факторы эволюции действуют как на микро-, так и на макроэволюционном уровне. Различие понятий микро– и макроэволюции – еще одно научное достижение, которое стало возможным благодаря синтетической теории эволюции. Сами термины были введены в научный обиход в 1927 г. русским генетиком Ю.А. Филип-ченко. Микроэволюция – это совокупность эволюционных изменений в рамках популяций за сравнительно небольшой период времени, приводящих к возникновению новых видов живых организмов. Макроэволюция – совокупность эволюционных преобразований на протяжении длительного периода времени, приводящих к возникновению новых надвидовых форм организации живого. 5.8. Экология и учение о биосфере Совокупность всех биогеоценозов на поверхности Земли, связанных обменом вещества, энергии и информации, называется биосферой. Биосфера – это целостная самоорганизующаяся система, состоящая из различных компонентов (экологических систем, биоценозов, популяций, организмов и т. п.), которые в свою очередь могут рассматриваться как самостоятельные самоорганизующиеся системы. Биосфера охватывает часть атмосферы, гидросферу, верхнюю часть литосферы. Верхняя граница биосферы располагается примерно в 30 км над поверхностью Земли, нижняя – до 10 м в земной коре. При этом некоторые живые организмы обнаружены на глубине до 11 км. Температурные интервалы, в которых может существовать жизнь, также ограничены: от -2520до +180оС. Живые существа на поверхности Земли защищены от ультрафиолетовых лучей озоновым слоем. Биосферу рассматривают как единую систему, в которой масса живого вещества, несмотря на все изменения и переходы из одного состояния в другое, сохраняется на одном уровне. Структура, состав и энергия биосферы определяются прошлой и настоящей деятельностью всех живых организмов, в том числе и человека. В современном представлении о биосфере подчеркиваются взаимозависимость и взаимовлияние живой и неживой природы; биосфера – это живые организмы и среда их обитания. Качественные преобразования биосферы уже не раз случались на протяжении геологической и биологической эволюции, что сопровождалось исчезновением одних биологических видов и появлением других. Термин «биосфера» был впервые использован в 1875 г. австрийским ученым Э. Зюссом, который понимал под биосферой «совокупность организмов, ограниченную в пространстве и времени и обитающую на поверхности Земли». Таким образом, первоначально понятием «биосфера» обозначалась совокупность только живых организмов. Связь живой и неживой природы трактовалась односторонне: отмечалась зависимость живых организмов от химических, физических, геологических и т. п. факторов, однако обратное воздействие оставалось вне поля зрения ученых. Изменил представление о биосфере русский ученый и философ В.И. Вернадский. Центральной идеей В.И. Вернадского стало представление о живом веществе – совокупности всех живых организмов на планете. В процессе жизнедеятельности организмы получают из окружающей среды необходимые химические вещества, а после смерти они возвращают их обратно, таким образом, живое и неживое находятся в постоянном взаимодействии. В.И. Вернадский подчеркивает активное влияние живых организмов на косную материю. По его мнению, живое вещество составляет незначительную по объему и весу часть биосферы, однако оно является ее определяющим компонентом. Живые организмы – та геохимическая сила, которая играет ведущую роль в формировании облика нашей планеты. В ходе геологической эволюции воздействие живого вещества на косное только возрастает, что выражается, как пишет В.И. Вернадский, «в непрерывном биогенном токе атомов из живого вещества в косное вещество биосферы и обратно». Русский ученый подчеркивал целостность и гармоничность биосферы: «Можно говорить о всей жизни, о всем живом веществе как о едином целом в механизме биосферы^ все учитывается и все приспособляется с той же точностью, с той же механичностью и с тем же подчинением мере и гармонии, какую мы видим в стройных движениях небесных светил и начинаем видеть в системах атомов вещества и атомов энергии». Человечество наряду с растениями и животными является частью живого вещества. Однако в отличие от других элементов биосферы человечество оказывает интенсивное влияние не только на неживую материю, но и на само живое вещество, создавая новые виды растений и животных. С появлением на нашей планете одаренного разумом живого существа, писал В.И. Вернадский, планета вступает в качественно новую стадию своей истории. Ступень развития биосферы, связанная с появлением человека, называется ноосферой. Слово «ноосфера» происходит от греческого noos – разум. Понятие ноосферы введено французским ученым Э. Леруа в 1927 г. Ноосфера – это сфера разума, сфера взаимодействия человека и природы, в которой главным фактором эволюции выступает разумная деятельность. Учение В.И. Вернадского о ноосфере, которое создавалось в 1930-е гг., не сложилось в законченную теорию, более того, русский ученый даже само понятие ноосферы употреблял в разных смыслах. В его понимании, ноосфера – это: новое геологическое явление, суть которого заключается в возможности человека преобразовывать Землю своим трудом и мыслью; • область проявления научной мысли: «эволюционный процесс получает особое геологическое значение благодаря тому, что он создал новую геологическую силу – научную мысль социального человечества»; • главный фактор преобразования и дальнейшей эволюции биосферы: «человек своей деятельностью создает новую живую природу». Последнее определение приобрело новый смысл и особую актуальность спустя десятилетия – после возникновения молекулярной биологии, развития генной инженерии, опытов с клонированием и т. п. Концепцию ноосферы развивал и русский ученый А.Л. Чижевский. По его мнению, ноосфера – это не только земное, но и космическое явление, а человек как частица ноосферы – космическое существо. Ноосфера представляет собой единство живого, разумного и космического. Для доказательства этой идеи А.Л. Чижевский использовал данные собственных наблюдений. Обобщив огромный фактический материал, он обратил внимание на определенную синхронность между солнечной активностью – образованием солнечных пятен – и боевыми действиями на фронтах Первой мировой войны. А.Л. Чижевский выдвинул идею космических ритмов, от которых зависят не только биологические, но и социальные процессы на Земле. Согласно подсчетам, которые произвел русский ученый, в период минимальной солнечной активности происходит до 5 % всех значительных социальных действий, а в период максимальной – до 60 %. Спустя десятилетия идеи А.Л. Чижевского по-прежнему актуальны, более того, они служат основанием для теоретических и практических исследований в биологии и медицине. Концепция ноосферы получила развитие в работах французского ученого и философа П. Тейяр де Шардена. По его мнению, ноосфера – одна из стадий эволюции мира, на которой проявляется «целеустремленное сознание». «Целеустремленное сознание» – это разум и воля человека, действие которых позволяет постепенно сгладить противоречия между человеком и природой и контролировать направление будущей эволюции планеты. Как пишет Тейяр де Шарден, возникновение разума означает «трансформацию, затрагивающую состояние всей планеты». В контексте современной философской мысли концепции ноосферы носят умозрительный характер. Некоторые положения ноосферных теорий откровенно утопичны, поскольку редуцируют человека только к одному, хотя и существенному, модусу – разумному. Развитие концепции биосферы привело к созданию новой науки экологии. Слово «экология» происходит от греческих oikos – местопребывание, жилище и logos – учение. Буквальный смысл термина «экология» – учение о жилище, учение о доме. Экология – наука, изучающая взаимодействие живых организмов друг с другом и со средой обитания, т. е. всю совокупность связей и взаимодействий в биосфере и способы сохранения равновесия в этой системе. Термин «экология» введен в 1866 г. немецким биологом Э. Геккелем. В качестве научной дисциплины экология сложилась еще в начале XX в. – в 1913 г. в Швейцарии прошло первое международное совещание по вопросам охраны окружающей среды. Однако всерьез об экологической угрозе задумались только в 1970-е гг. Первыми заговорили об экологической проблеме участники Римского клуба, которые в 1968 г. собрались для обсуждения глобальных проблем, стоящих перед человечеством. В 1972 г. состоялась первая конференция ООН, посвященная проблемам окружающей среды, на которой был признан факт глобального экологического кризиса. После этого не только специалисты, но и широкая общественность стали говорить об экологической угрозе, что в свою очередь повлекло изменение статуса экологической науки и ее стремительное развитие. Из несамостоятельной дисциплины в рамках биологии экология превратилась в комплекс междисциплинарных исследований с ярко выраженной мировоззренческой составляющей. Экология вышла за пределы не только биологии, но и в целом естествознания. Внутри экологической науки существует множество разделов, которые могут рассматриваться как вполне самостоятельные направления исследований: глобальная экология, социальная, медицинская, историческая, этическая, промышленная и т. п. Идеи и принципы этой науки имеют мировоззренческий характер, поэтому экология связана не только с науками о человека и культуре, но и с философией. Столь серьезные изменения позволяют говорить о том, что, несмотря на столетнюю историю, экология еще очень молодая наука. Способы решения экологической и вытекающих из нее демографической и медико-биологической проблем являются центральной темой экологии. В ходе эволюции человек от первоначального потребления природных богатств перешел к активному вмешательству в живую природу и ее преобразованию. Он создал искусственную среду обитания: предметы материальной и духовной культуры, искусственные экологические системы, технику и т. п. На данный момент человечество уже уничтожило около 70 % естественных экологических систем. Понятно, что такая активная деятельность существенно влияет на характер процессов в биосфере: рост искусственной среды приводит к разрушению естественной. Живая природа не остается пассивной. Ответная реакция подчас трудно поддается прогнозированию. Понятно, что человек не может отказаться от своей деятельности, которая составляет основу его существования, т. е. он и дальше неизбежно будет влиять на процессы, происходящие в биосфере. Поэтому экологи говорят о необходимости гармонизации отношений био-, ноо– и техносфер. Однако воздействие на природу не может оставаться стихийным и бесконтрольным, иначе человечество погибнет как биологический вид. Освобождаясь от природы, человек парадоксальным образом оказывается все более тесно с ней связанным. Нарастание экологических проблем подталкивает к осознанию этого обстоятельства. Одним из частных аспектов экологической проблемы является парниковый эффект. Возникновение этого эффекта связано с использованием ископаемых видов топлива: угля, нефти, газа, которые уже длительное время были исключены из круговорота веществ. Сжигание ископаемого топлива приводит к тому, что ежегодно в атмосферу выбрасывается до 20 млрд т углекислого газа. Промышленные выбросы углекислоты уже не компенсируются процессами фотосинтеза, в ходе которых вырабатывается кислород. Углекислый газ существенно влияет на тепловой баланс нашей планеты, поскольку углекислота пропускает солнечный свет, идущий к Земле, но поглощает инфракрасное излучение, идущее в обратном направлении. Следствием парникового эффекта становится глобальное потепление климата. Глобальное повышение температуры ведет к таянию полярного и материкового льдов и повышению уровня мирового океана. Остроту данной проблеме придает то обстоятельство, что для изменения газового состава земной атмосферы и ее возвращения к нормальному состоянию понадобятся даже не десятки, а сотни лет. В ООН уже рассматривался вопрос о введении налога на выбросы углекислого газа в атмосферу – так называемый экологический налог – для того чтобы использовать полученные финансовые ресурсы на восстановление лесов. Другой составляющей глобального экологического кризиса является разрушение озонового слоя. Озон содержится в стратосфере (от 10 до 50 км над уровнем моря) и выполняет функцию естественного фильтра, поглощающего губительные для жизни ультрафиолетовые лучи. Разрушение озонового слоя является следствием загрязнения стратосферы, в которой опасные вещества достаточно быстро перемещаются вдоль поверхности Земли, распространяясь на большие расстояния. Значительную экологическую опасность представляют также кислотные соединения, выбрасываемые в атмосферу вместе с газами автомобильного транспорта, дымом теплоэлектростанций и т. п. Результатом кислотного загрязнения атмосферы становятся кислотные осадки, которые в свою очередь загрязняют почву и водоемы. В последние годы все острее стоит вопрос захоронения радиоактивных отходов, что также является частью глобальной экологической проблемы. Механизмы миграции радиоактивных веществ в почве еще слабо изучены, поэтому надежность захоронения радиоактивных отходов под землей (именно эта технология считается самой «чистой») не абсолютна. В плане конкретных, относительно быстрых решений для выхода человечества из экологического тупика предлагается форсирование научных исследований по поиску альтернативных источников энергии. В качестве альтернативных видов энергии рассматриваются солнечная, ветровая, термоядерная и атомная. Безусловно, использование новых видов энергии не решает все экологические проблемы человечества. Так, после катастрофы на Чернобыльской АЭС в апреле 1986 года стали очевидны опасности, связанные с выработкой и использованием атомной энергии. Использование солнечной и ветровой энергии не снимает с повестки дня вопрос об изменении теплового баланса Земли. Что касается энергии термоядерного синтеза, перспектива использования которой выглядит весьма заманчиво, то об этом сейчас говорится скорее гипотетически. Существует целый ряд теоретических и практических проблем, связанных с созданием условий, необходимых для проведения управляемой реакции термоядерного синтеза. Другой составляющей решения экологической проблемы является создание безотходных технологий и замкнутых циклов использования веществ. Кроме того, ведутся поиски способов утилизации отходов с помощью биотермического обезвреживания или нейтрализации с участием разнообразных групп живых организмов. Обострение глобальных проблем вынуждает человечество искать новые способы взаимодействия с миром. Современные философы и футурологи говорят о необходимости изменения путей развития цивилизации. Во всех прогнозах главный враг человечества – он сам. Преодоление глобальных проблем, в том числе и экологической, связано с трансформацией ценностных установок, поиском новых мировоззренческих ориентиров, формированием иного типа массового сознания. В современной философии и науке идет поиск новых принципов взаимодействия человека с окружающей средой. |
|
||
Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Наверх |
||||
|