|
||||
|
Глава 2Основы криптографии ¦ Алгоритмы и стандарты шифрования ¦ Электронная цифровая подпись ¦ Современные технологии аутентификации. Смарт-карты Криптография– наука о математических методах обеспечения конфиденциальности (невозможности прочтения информации посторонним) и аутентичности (целостности и подлинности авторства) информации. Другими словами, криптография изучает методы шифрования информации, то есть способы защиты данных, применяемые для хранения критически важной информации в ненадежных источниках или передачи ее по незащищенным каналам связи. Шифрование как процесс своей историей уходит глубоко в века. Так, подстановочные шифры существуют уже около 2500 лет. Яркий тому пример – шифр Атбаш, который возник примерно в 600 году до нашей эры. Суть его работы заключалась в использовании еврейского алфавита в обратном порядке. Юлий Цезарь также использовал подстановочный шифр, который и был назван в его честь – шифр Цезаря. Суть шифра Цезаря заключалась в том, чтобы заменить каждую из букв другой, стоящей в алфавите, на три места дальше от исходной. Так, буква A превращалась в Д, Б преобразовывалась в E, Я преобразовывалась в Г и т. д. Бесспорно, шифрование можно назвать одним из важнейшим средств обеспечения безопасности. Однако не следует забывать и о том, что само по себе шифрование отнюдь не панацея от всех проблем. Механизмы шифрования могут и должны являться составной частью комплексной программы по обеспечению безопасности. Согласно классическим канонам ИБ с помощью шифрования обеспечиваются три основополагающих состояния безопасности информации. ¦ Конфиденциальность. Шифрование используется для сокрытия информации от неавторизованных пользователей при передаче или хранении. ¦ Целостность. Шифрование используется для предотвращения изменения информации при передаче или хранении. Яркий пример – контрольная сумма, полученная с использованием хэш-функции (то, что можно увидеть на FTP-серверах рядом с файлом (примерно так – dpofgj 0 93utm34tdfgb45ygf), который собираемся скачать). ¦ Идентифицируемость. Шифрование используется для аутентификации источника информации и предотвращения отказа отправителя информации от того факта, что данные были отправлены именно им. Известно, что любая система шифрования может быть взломана. Речь идет лишь о том, что для получения доступа к защищенной шифрованием информации может потребоваться неприемлемо большое количество времени и ресурсов. Что это значит и как это выглядит в реальной жизни? Представьте себе такую ситуацию: злоумышленнику каким-то образом удалось перехватить зашифрованную информацию. Дальнейшие действия взломщика могут быть сведены к двум вариантам взлома (возможен и третий, который сводится к эксплуатации уязвимостей рабочей среды): ¦ атака "грубой силой", или Brute Force (атаки "грубой силой" подразумевают подбор всех возможных вариантов ключей); ¦ поиск уязвимых мест в алгоритме. Учитывая тот факт, что применяемые в настоящее время алгоритмы шифрования уже проверены "огнем и временем", совершенно очевидно, что взломщик будет использовать Brute Force. Взлом конфиденциальной информации, зашифрованной стойким алгоритмом и достаточно длинным ключом (к примеру, 512 бит), потребует со стороны взломщика использования "армии" суперкомпьютеров или распределительной сети из нескольких сотен тысяч машин плюс уйму времени и денег. Но если деньги есть, то почему бы и нет! Так, в 1997 году организация Electronic Frontier Foundation (EFF) анонсировала компьютерную систему, которая сможет найти ключ DES за четыре дня. Создание такой системы обошлось компании в $250 000. С помощью современного оборудования можно определить ключ DES посредством атаки "грубой силы" за 35 минут. 2.1. Алгоритмы и стандарты шифрованияВ зависимости от используемых ключей шифрование условно можно разделить на следующие виды. ¦ Симметричное шифрование, при котором ключ для шифрования и дешифрования представляет собой один и тот же ключ (на обыденном уровне – просто пароль). ¦ Асимметричное шифрование: подразумевает использование двух различных ключей – открытого и закрытого. Открытый ключ, как правило, передается в открытом виде, закрытый же всегда держится в тайне. Известны также и другие виды шифрования, такие, например, как тайнопись. Алгоритмы тайнописи по известным причинам не являются публичными: посторонним лицам неизвестен сам алгоритм шифрования; закон преобразования знают только отправитель и получатель сообщения. Одним из ярких примеров таких систем можно считать одноразовые блокноты. Именно одноразовые блокноты (One-time Pad, или OTP) можно назвать единственной теоретически невзламываемой системой шифрования. Одноразовый блокнот представляет собой список чисел в случайном порядке, используемый для кодирования сообщения. Как это и следует из названия, OTP может быть использован только один раз. Одноразовые блокноты широко применяются в информационных средах с очень высоким уровнем безопасности (но только для коротких сообщений). Так, в Советском Союзе OTP использовался для связи разведчиков с Москвой. Симметричное шифрованиеКак было уже сказано выше, при симметричном шифровании для шифрования и дешифрования данных используется один и тот же ключ. Понятно, что ключ алгоритма должен сохраняться в секрете обеими сторонами. Говоря простым языком, в данном случае под ключом подразумевается пароль, который, разумеется, должен держаться в тайне. Популярными алгоритмами симметричного шифрования являются: ¦ DES (значительно устарел) и TripleDES (3DES); ¦ AES (Rijndael); ¦ ГОСТ 28147-89; ¦ Blowfish. Основными параметрами алгоритмов симметричного шифрования можно считать: ¦ стойкость; ¦ длину ключа; ¦ количество раундов; ¦ длину обрабатываемого блока; ¦ сложность аппаратной/программной реализации. Итак, начнем. Data Encryption Standard (DES). Алгоритм Data Encryption Standard (DES) был разработан компанией IBM в начале 1970-х гг. Национальный институт стандартов и технологий США (NIST) принял на вооружение алгоритм (публикация FIPS 46) для DES в 1977 году. Дальнейшей модификации алгоритм подвергался в 1983, 1988, 1993 и 1999 годах. До недавнего времени DES был "стандартом США", поскольку правительство этой страны рекомендовало применять его для реализации различных систем шифрования данных. Однако несмотря на то что изначально DES планировалось использовать не более 10-15 лет, попытки его замены начались только в 1997 году. DES использует ключ длиной 56 бит. По сегодняшним меркам, такая длина ключа неприемлема. DES является блочным алгоритмом шифрования, обрабатывающим единовременно один 64-битный блок открытого текста. В алгоритме DES выполняются 16 циклов шифрования с различным подключом в каждом из циклов. Ключ подвергается действию своего собственного алгоритма для образования 16 подключей (рис. 2.1). Рис. 2.1. Схема работы DES Рассмотрим работу алгоритма подробнее. Входной блок данных, состоящий из 64 бит, преобразуется в выходной блок идентичной длины. Ключ шифрования должен быть известен как отправляющей, так и принимающей сторонам. В алгоритме широко используются перестановки битов текста. Вводится функция F, которая работает с 32-разрядными словами исходного текста ® и использует в качестве параметра 48-разрядный ключ (J). Схема работы функции F показана на рис. 2.1. Сначала 32 входных разряда расширяются до 48, при этом некоторые разряды повторяются. Для полученного 48-разрядного кода и ключа выполняется операция сложения по модулю 2. Результирующий 48-разрядный код преобразуется в 32-разрядный с помощью S-матриц. Исходный 48-разрядный код делится на восемь групп по шесть разрядов. Первый и последний разряды в группе используются в качестве адреса строки, а средние четыре разряда – в качестве адреса столбца. В результате каждые шесть бит кода преобразуются в четыре бита, а весь 48-разрядный код – в 32-разрядный (для этого нужно восемь S-матриц). Существуют разработки, позволяющие выполнять шифрование в рамках стандарта DES аппаратным образом, что обеспечивает довольно высокое быстродействие. Чтобы все-таки разобраться во всех тонкостях алгоритма DES, будет вполне уместно привести описание так называемой сети Фейштеля (иногда называют сетью Файстеля), которая и стоит в основе DES. В 1973 году Хорст Фейштель (Horst Feistel) в журнале Scientific American опубликовал статью "Cryptography and Computer Privacy", в которой раскрыл некоторые важные аспекты шифрования, а также ввел конструкцию, названную впоследствии сетью Фейштеля. Эта схема была использована в проекте Lucifer фирмы IBM, над которым работали Фейштель и Дон Копперсмит (Don Coppersmith). Данный проект был скорее экспериментальным, но стал базисом для Data Encryption Standard (DES). Итеративная структура алгоритма позволяла упростить его реализацию в аппаратных средах. Уместно заметить, что следующие блочные шифры как раз таки используют классическую или модифицированную сеть Фейштеля в своей основе: Blowfish, Camellia, CAST, DES, FEAL, ГОСТ 28147-89, KASUMI, LOKI97, Lucifer, MacGuffin, MARS, MAGENTA, MISTY1, RC2, RC5, RC6, Skipjack, TEA, Triple DES, Twofish, XTEA. TripleDES (3DES). Очевидная нестойкость DES стала причиной поисков некой альтернативы. В 1992 году исследования показали, что DES можно использовать трижды для обеспечения более мощного шифрования. Так появился тройной DES (3DES). Тройной DES используется либо с двумя, либо с тремя ключами. Используемый при этом ключ обеспечивает большую мощность в сравнении с обычным DES. Advanced Encrypt Standard (AES). Вскоре после выхода DES обнаружилась очевидная слабость алгоритма. Необходимость в принятии нового стандарта была более чем явной: небольшая длина ключа DES (56 бит) позволяла применить метод грубой силы против этого алгоритма. Кроме того, архитектура DES была ориентирована на аппаратную реализацию, и программная реализация алгоритма на платформах с ограниченными ресурсами не давала необходимого быстродействия. Модификация TDES обладала достаточной длиной ключа, но при этом была еще медленнее. TDES не просуществовал столь долго, чтобы можно было говорить о том, что алгоритм стоек и надежен. Ему на смену, как и следовало ожидать, пришел более стойкий и надежный алгоритм – AES, который, между прочим, был выбран в результате конкурса и принят в качестве американского стандарта шифрования правительством США. Немного о самом конкурсе. 2 января 1997 года NIST (Национальный Институт Стандартов и Технологий) объявляет о намерении найти замену DES, являвшемуся американским стандартом с 1977 года. NIST принял достаточное количество предложений от заинтересованных сторон о том, каким образом следует выбирать алгоритм. Активный отклик со стороны открытого криптографического сообщества привел к объявлению конкурса 12 сентября 1997 года. Алгоритм могла предложить практически любая организация или группа исследователей. Минимальные требования к новому стандарту были следующими: ¦ это должен быть блочный шифр; ¦ длина блока должна составлять 128 бит; ¦ алгоритм должен работать с ключами длиной 128, 192 и 256 бит; ¦ использовать операции, легко реализуемые как аппаратно (в микрочипах), так и программно (на персональных компьютерах и серверах); ¦ ориентироваться на 32-разрядные процессоры; ¦ не усложнять без необходимости структуру шифра, чтобы все заинтересованные стороны были в состоянии самостоятельно провести независимый криптоанализ алгоритма и убедиться, что в нем не заложено каких-либо недокументированных возможностей. Кроме всего вышеперечисленного, алгоритм, который претендует на то, чтобы стать стандартом, должен распространяться по всему миру без платы за пользование патентом. 20 августа 1998 года на первой конференции AES был объявлен список из 15 кандидатов, а именно: CAST-256, CRYPTON, DEAL, DFC, E2, FROG, HPC, LOKI97, MAGENTA, MARS, RC6, Rijndael, SAFER+, Serpent и Twofish. Понятное дело, что в последующих обсуждениях эти алгоритмы подвергались самому тщательному анализу, причем исследовались не только криптографические свойства, такие как стойкость к известным атакам и отсутствие слабых ключей, но и практические аспекты реализации. Так, особое внимание при выборе алгоритма было направлено на оптимизацию скорости выполнения кода на различных архитектурах (от ПК до смарт-карт и аппаратных реализаций), возможность оптимизации размера кода, возможность распараллеливания. В марте 1999 года прошла вторая конференция AES, а в августе 1999 года были объявлены пять финалистов, среди которых оказались: MARS, RC6, Rijndael, Serpent и Twofish. Все они были разработаны авторитетными криптографами, имеющими мировое признание. На 3-й конференции AES в апреле 2000 года все авторы представили свои алгоритмы. В Нью-Йорке 13 и 14 апреля 2000 года, незадолго до завершения второго этапа, прошла третья конференция AES. Двухдневная конференция была разделена на восемь сессий по четыре в день. На сессиях первого дня обсуждались вопросы, связанные с программируемыми матрицами (FGPA), проводилась оценка реализации алгоритмов на различных платформах, в том числе PA-RISC, IA-64, Alpha, высокоуровневых смарт-картах и сигнальных процессорах, сравнивалась производительность претендентов на стандарт, анализировалось количество раундов в алгоритмах-кандидатах. На второй день был проанализирован Rijndael с сокращенным количеством раундов и показана его слабость в этом случае, обсуждался вопрос об интегрировании в окончательный стандарт всех пяти алгоритмов-претендентов, еще раз тестировались все алгоритмы. В конце второго дня была проведена презентация, на которой претенденты рассказывали о своих алгоритмах, их достоинствах и недостатках. О Rijndael как о лидере рассказал Винсент Риджмен (Vincent Rijmen), заявивший о надежности защиты, высокой общей производительности и простоте архитектуры своего кандидата. 2 октября 2000 года было объявлено, что победителем конкурса стал алгоритм Rijndael, и началась процедура стандартизации. 28 февраля 2001 года был опубликован проект, а 26 ноября 2001 года AES был принят как FIPS 197. Строго говоря, AES и Rijndael не одно и то же, так как Rijndael поддерживает широкий диапазон длин ключей и блоков. Особо следует подчеркнуть тот факт, что алгоритм Rijndael не похож на большинство известных алгоритмов симметричного шифрования, в основе которых лежит сеть Фейштеля. Напомним нашим читателям, что особенность сети Фейштеля состоит в том, что входное значение разбивается на два и более субблоков, часть из которых в каждом раунде обрабатывается по определенному закону, после чего накладывается на необрабатываемые субблоки. В отличие от ГОСТ 28147, который будет рассмотрен ниже, алгоритм Rijndael представляет блок данных в виде двухмерного байтового массива размером 4 х 4, 4 х 6 или 4 х 8 (допускается использование нескольких фиксированных размеров шифруемого блока информации). Все операции выполняются с отдельными байтами массива, а также с независимыми столбцами и строками. Алгоритм Rijndael предусматривает выполнение четырех последовательных преобразований. 1. BS (ByteSub) – табличная замена каждого байта массива (рис. 2.2). Рис. 2.2. Табличная замена каждого байта массива 2. SR (ShiftRow) – сдвиг строк массива. При этой операции первая строка остается без изменений, а остальные циклически побайтно сдвигаются влево на фиксированное количество байт, зависящее от размера массива. Например, для массива размером 4 х 4 строки 2, 3 и 4 сдвигаются на 1, 2 и 3 байта соответственно (рис. 2.3). 3. Следующим идет MC (MixColumn) – операция над независимыми столбцами массива, когда каждый столбец по определенному правилу умножается на фиксированную матрицу C(X) (рис. 2.4). 4. Заключительный этап – AK (AddRoundKey) – добавление ключа. Каждый бит массива складывается по модулю 2 с соответствующим битом ключа раунда, который, в свою очередь, определенным образом вычисляется из ключа шифрования (рис. 2.5). Рис. 2.3. Сдвиг строк массива Рис. 2.4. Операция MixColumn Рис. 2.5. Операция добавления ключа Вышеперечисленные преобразования шифруемых данных поочередно выполняются в каждом раунде (рис. 2.6). Рис. 2.6. Последовательность раундов Rijndael В алгоритме Rijndael количество раундов шифрования ® переменное (10, 12 или 14 раундов) и зависит от размеров блока и ключа шифрования (для ключа также предусмотрено несколько фиксированных размеров). Почему же Rijndael стал новым стандартом шифрования, опередившим другие алгоритмы? Прежде всего, он обеспечивает высокую скорость шифрования, причем на всех платформах: как при программной, так и при аппаратной реализации. Алгоритм отличается удачным механизмом распараллеливания вычислений по сравнению с другими алгоритмами, представленными на конкурс. Кроме того, требования к ресурсам для его работы минимальны, что важно при его использовании в устройствах, обладающих ограниченными вычислительными возможностями. При всех преимуществах и оригинальности алгоритма AES можно было бы считать абсолютом надежности и стойкости, но, как оно всегда и бывает, совершенных продуктов нет. 26 мая 2006 года на конференции Quo Vadis IV Николя Тадеуш Куртуа (польский криптограф, проживающий во Франции) представил практическое доказательство существования алгебраических атак, оптимизированных против шифра AES-Rijndael. За полтора часа на своем ноутбуке он осуществил демо-взлом всего лишь по нескольким шифртекстам близкого аналога Rijndael. Хотя это был только модельный шифр, он являлся таким же стойким, в него не было добавлено существенных слабостей, он имел такие же хорошие диффузионные характеристики и устойчивость ко всем известным до этого видам криптоанализа. Единственным отличием были лишь измененные в рамках модели алгебраических атак параметры S-блоков и уменьшенное для наглядности количество раундов. Однако этого было достаточно, чтобы убедить скептиков в реальности алгебраических атак и несовершенстве даже такого, казалось бы, совершенного метода шифрования. ГОСТ 28147. Следующим алгоритмом симметричного шифрования, который мы рассмотрим, станет ГОСТ 28147-89. Это советский и российский стандарт симметричного шифрования, введенный 1 июля 1990 года. Стандарт обязателен для организаций, предприятий и учреждений, применяющих криптографическую защиту данных, хранимых и передаваемых в сетях ЭВМ, в отдельных вычислительных комплексах или ЭВМ. Алгоритм был разработан в бывшем Главном Управлении КГБ СССР или в одном из секретных НИИ в его системе. Первоначально имел гриф (ОВ или СС – точно неизвестно), затем гриф последовательно снижался и к моменту официального проведения алгоритма через Госстандарт СССР в 1989 году был снят. Алгоритм остался ДСП (как известно, ДСП не считается грифом). В 1989 году стал официальным стандартом СССР, а позже, после распада СССР, федеральным стандартом Российской Федерации. С момента опубликования ГОСТа на нем стоял ограничительный гриф "Для служебного пользования", и формально шифр был объявлен "полностью открытым" только в мае 1994 года. По известным причинам, история создания шифра и критерии его проектирования до сих пор неизвестны. ГОСТ 28147-89 представляет собой блочный шифр с 256-битным ключом и 32 циклами преобразования, оперирующий 64-битными блоками. Основа алгоритма – уже известная нам сеть Фейштеля. Основным режимом шифрования по ГОСТ 28147-89 является режим простой замены (определены также более сложные режимы гаммирования и гаммирования с обратной связью). Рассмотрим механизм работы алгоритма подробнее. При работе ГОСТ 28147-89 информация шифруется блоками по 64 бита (такие алгоритмы называются блочными), которые затем разбиваются на два субблока по 32 бита (N1 и N2). После завершения обработки субблока N1 его значение складывается со значением субблока N2 (сложение выполняется по модулю 2, то есть применяется логическая операция XOR – исключающее ИЛИ), а затем субблоки меняются местами. Данное преобразование выполняется определенное количество раз (раундов): 16 или 32 в зависимости от режима работы алгоритма. В каждом раунде выполняются две операции (рис. 2.7). Рис. 2.7. Преобразование выполняется определенное количество раз Первая операция подразумевает наложение ключа. Содержимое субблока N1 складывается по модулю 2 с 32-битной частью ключа Kx. Полный ключ шифрования представляется в виде конкатенации 32-битных подключей: K0, K1, K2, K3, K4, K5, K6, K7. В процессе шифрования используется один из этих подключей, в зависимости от номера раунда и режима работы алгоритма. Вторая операция осуществляет табличную замену. После наложения ключа субблок N1 разбивается на восемь частей по четыре бита, значение каждой из которых заменяется в соответствии с таблицей замены для данной части субблока. После этого выполняется побитовый циклический сдвиг субблока влево на 11 бит. Алгоритм, определяемый ГОСТ 28147-89, может работать в четырех режимах: ¦ простой замены; ¦ гаммирования; ¦ гаммирования с обратной связью; ¦ генерации имитоприставок. В генерации имитоприставок используется одно и то же описанное выше шифрующее преобразование, но, поскольку назначение режимов различно, осуществляется это преобразование в каждом из них по-разному. В режиме простой замены для зашифровки каждого 64-битного блока информации выполняются 32 описанных выше раунда. Каждый из блоков шифруется независимо от другого, то есть результат шифрования каждого блока зависит только от его содержимого (соответствующего блока исходного текста). При наличии нескольких одинаковых блоков исходного (открытого) текста соответствующие им блоки шифртекста тоже будут одинаковы, что дает дополнительную полезную информацию для пытающегося вскрыть шифр криптоаналитика. Поэтому данный режим применяется в основном для шифрования самих ключей шифрования (очень часто реализуются многоключевые схемы, в которых по ряду соображений ключи шифруются друг на друге). Для шифрования собственно информации предназначены два других режима работы: гаммирования и гаммирования с обратной связью. В режиме гаммирования каждый блок открытого текста побитно складывается по модулю 2 с блоком гаммы шифра размером 64 бита. Гамма шифра – это специальная последовательность, которая получается в результате определенных операций с регистрами N1 и N2 . 1. В регистры N1 и N2 записывается их начальное заполнение – 64-битная величина, называемая синхропосылкой. 2. Выполняется зашифровка содержимого регистров N1 и N2 (в данном случае синхропосылки) в режиме простой замены. 3. Содержимое регистра N1 складывается по модулю (232– 1) с константой C1, равной 224 + 216 + 28 + 24, а результат сложения записывается в регистр N1. 4. Содержимое регистра N2 складывается по модулю 232 с константой C2, равной 224 + 216 + 28 + 1, а результат сложения записывается в регистр N2. 5. Содержимое регистров N1 и N2 подается на выход в качестве 64-битного блока гаммы шифра (в данном случае N1 и N2 образуют первый блок гаммы). Если необходим следующий блок гаммы (то есть нужно продолжить зашифровку или расшифровку), выполняется возврат к операции 2. Для расшифровки гамма вырабатывается аналогичным образом, а затем к битам зашифрованного текста и гаммы снова применяется операция XOR. Для выработки нужной для расшифровки гаммы шифра у пользователя, расшифровывающего криптограмму, должны быть тот же ключ и то же значение синхропосылки, которые применялись при зашифровке информации. В противном случае получить исходный текст из зашифрованного не удастся. В большинстве реализаций алгоритма ГОСТ 28147-89 синхропосылка несекретна, однако есть системы, где синхропосылка является таким же секретным элементом, как и ключ шифрования. Для таких систем эффективная длина ключа алгоритма (256 бит) увеличивается еще на 64 бит секретной синхропосылки, которую также можно рассматривать как ключевой элемент. В режиме гаммирования с обратной связью для заполнения регистров N1 и N2 , начиная со второго блока, используется не предыдущий блок гаммы, а результат зашифровки предыдущего блока открытого текста. Первый же блок в данном режиме генерируется полностью аналогично предыдущему. Рассматривая режим генерации имитоприставок, следует определить понятие предмета генерации. Имитоприставка – это криптографическая контрольная сумма, вычисляемая с использованием ключа шифрования и предназначенная для проверки целостности сообщений. При генерации имитоприставки выполняются следующие операции: первый 64-битный блок массива информации, для которого вычисляется имитоприставка, записывается в регистры N1 и N2 и зашифровывается в сокращенном режиме простой замены (выполняются первые 16 раундов из 32). Полученный результат суммируется по модулю 2 со следующим блоком информации с сохранением результата в N1 и N2. Цикл повторяется до последнего блока информации. Получившееся в результате этих преобразований 64-битное содержимое регистров N1 и N2 или его часть и называется имитоприставкой. Размер имитоприставки выбирается исходя из требуемой достоверности сообщений: при длине имитоприставки r бит вероятность, что изменение сообщения останется незамеченным, равна 2^.Чаще всего используется 32-битная имитоприставка, то есть половина содержимого регистров. Этого достаточно, поскольку, как любая контрольная сумма, имитоприставка предназначена прежде всего для защиты от случайных искажений информации. Для защиты же от преднамеренной модификации данных применяются другие криптографические методы – в первую очередь электронная цифровая подпись. При обмене информацией имитоприставка служит своего рода дополнительным средством контроля. Она вычисляется для открытого текста при зашифровке какой-либо информации и посылается вместе с шифртекстом. После расшифровки вычисляется новое значение имитоприставки, которое сравнивается с присланной. Если значения не совпадают, значит, шифртекст был искажен при передаче или при расшифровке использовались неверные ключи. Особенно полезна имитоприставка для проверки правильности расшифровки ключевой информации при использовании многоключевых схем. Алгоритм ГОСТ 28147-89 считается достаточно сильным – в настоящее время для его раскрытия не существует более эффективных методов, чем упомянутый выше Brute Force. Высокая стойкость алгоритма достигается в первую очередь за счет большой длины ключа, равной 256 бит. К тому же при использовании секретной синхропосылки эффективная длина ключа увеличивается до 320 бит, а засекречивание таблицы замен прибавляет дополнительные биты. Кроме того, криптостойкость ГОСТ 28147-89 уже при 32 раундах можно считать более чем достаточной, и это притом, что полный эффект рассеивания входных данных достигается уже после восьми раундов. На сегодняшний день алгоритм ГОСТ 28147-89 полностью удовлетворяет всем требованиям криптографии и обладает теми же достоинствами, что и другие алгоритмы, но лишен их недостатков. К очевидным достоинствам этого алгоритма можно отнести: ¦ эффективность реализации и, соответственно, высокое быстродействие на современных компьютерах; ¦ бесперспективность силовой атаки (XSL-атаки в учет не берутся, так как их эффективность на данный момент полностью не доказана). Однако же, как оно всегда и бывает, алгоритм не лишен недостатков: тривиально доказывается, что у ГОСТа существуют "слабые" ключи и S-блоки, но в стандарте не описываются критерии выбора и отсева "слабых". Кроме того, стандарт не специфицирует алгоритм генерации S-блоков (таблицы замен). С одной стороны, это может являться дополнительной секретной информацией (помимо ключа), а с другой – поднимает ряд проблем: нельзя определить криптостойкость алгоритма, не зная заранее таблицы замен; реализации алгоритма от различных производителей могут использовать разные таблицы замен и могут быть несовместимы между собой. Кратко рассмотрим некоторые другие алгоритмы симметричного шифрования. Blowfish. Blowfish представляет собой 64-битный блочный шифр, разработанный Шнайером (Schneier) в 1993 году. Этот шифр, как и многие другие, основан на алгоритме сети Фейштеля. Отдельный раунд шифрования данного алгоритма состоит из зависимой от ключа перестановки и зависимой от ключа с данными замены. Все операции основаны на операциях XOR и прибавлениях к 32-битным словам (XORs and additions on 32-bit words). Ключ имеет переменную длину (максимальная длина 448 бит) и используется для генерации нескольких подключевых массивов (subkey arrays). Шифр был создан специально для 32-битных машин и существенно быстрее ранее рассмотренного нами алгоритма DES. IDEA (International Data Encryption Algorithm) был разработан К. Лейем (Lai) и Д. Месси (Massey) в конце 1980-х годов. Это шифр, состоящий из 64-битных повторяющихся блоков со 128-битным ключом и восемью раундами. Следует отметить, что, в отличие от ранее нами рассмотренных алгоритмов шифрования, IDEA не основан на сети Фейштеля, хотя процесс дешифрования аналогичен процессу шифрования. IDEA был сконструирован с учетом его легкого воплощения как программно, так и аппаратно. Ко всему прочему безопасность IDEA основывается на использовании трех несовместимых типов арифметических операций над 16-битными словами. Один из принципов создания IDEA заключался в том, чтобы максимально затруднить его дифференциальный криптоанализ, что в настоящее время выражается отсутствием алгебраически слабых мест алгоритма. Даже не смотря на то что найденный неким "Daemen" обширный класс (251) слабых ключей теоретически может скомпрометировать алгоритм, IDEA остается достаточно надежным алгоритмом, так как существует 2128 возможных вариантов ключей, что делает его взлом трудно осуществимым. RC5 представляет собой довольно быстрый блочный шифр, разработанный Ривестом (Ronald Linn Rivest) специально для «RSA Data Security». Этот алгоритм параметричен, то есть его блок, длинна ключа и количество проходов (раундов) переменны. Размер блока может равняться 32, 64 или 128 бит. Количество проходов может варьироваться от 0 до 2048 бит. Параметричность подобного рода делает RC5 необычайно гибким и эффективным алгоритмом в своем классе. Исключительная простота RC5 делает его простым в использовании. RC5 с размером блока в 64 бита и 12 или более проходами обеспечивает хорошую стойкость против дифференциального и линейного криптоанализов. Асимметричное шифрованиеВ отличие от алгоритмов симметричного шифрования, где используется один и тот же ключ как для расшифровки, так и для зашифровки, алгоритмы асимметричного шифрования используют открытый (для зашифровки) и закрытый, или секретный (для расшифровки), ключи. На практике один ключ называют секретным, а другой – открытым. Секретный ключ содержится в тайне владельцем пары ключей. Открытый ключ передается публично в открытом виде. Следует отметить тот факт, что если у абонента имеется один из пары ключей, то другой ключ вычислить невозможно. Открытый ключ вычисляется из секретного: kl = f(k2). Асимметричные алгоритмы шифрования основаны на применении однонаправленных функций. Согласно определению функция y = f(x) является однонаправленной, если ее можно легко вычислить для всех возможных вариантов x, а для большинства возможных значений y достаточно сложно вычислить такое значение x, при котором y = f(x) . Примером однонаправленной функции может служить умножение двух больших чисел: N = S х G. Само по себе, с точки зрения математики, такое умножение представляет собой простую операцию. Однако обратная операция (разложение N на два больших множителя), называемая также факторизацией, по современным временным оценкам представляет собой достаточно сложную математическую задачу. Ну что ж, рассмотрим некоторые из алгоритмов асимметричного шифрования. Алгоритм Диффи—Хеллмана. В 1976 году Уитфилд Диффи (Whitfield Diffie) и Мартин Хеллман (Martin Hellman) разработали свою систему шифрования с открытым ключом. Система Диффи—Хеллмана разрабатывалась для решения проблемы распространения ключей при использовании систем шифрования с секретными ключами. Идея заключалась в том, чтобы применять безопасный метод согласования секретного ключа без передачи ключа каким-либо другим способом. Следовательно, необходимо было найти безопасный способ получения секретного ключа с помощью того же метода связи, для которого разрабатывалась защита. Суть алгоритма Диффи—Хеллмана заключается в следующем. Предположим, что двум точкам (S1 и S2) требуется установить между собой безопасное соединение, для которого необходимо согласовать ключ шифрования. ¦ S1 и S2 принимают к использованию два больших целых числа a и b, причем 1 < a < b. ¦ S1 выбирает случайное число i и вычисляет I = ai ? mod b. S1 передает I абоненту S2. ¦ S2 выбирает случайное число j и вычисляет J = aj ? mod b. S2 передает J абоненту S1 . ¦ S1 вычисляет k1 = Ji ? mod b. ¦ S2 вычисляет k2 = Ij ? mod b. Имеем k1 = k2 = ai ? j х mod b, следовательно, k1 и k2 являются секретными ключами, предназначенными для использования при передаче других данных. Даже если допустить, что злоумышленнику каким-то образом удастся прослушать передаваемый трафик, то ему будут известны a, b, I и J. Тем не менее остаются в секрете i и j. Уровень безопасности системы зависит от сложности нахождения i при известном I = ai ? mod b. Эта задача называется задачей дискретного логарифмирования и считается очень сложной (то есть с помощью современного вычислительного оборудования ее решить практически невозможно), если числа очень велики. Следовательно, a и b необходимо выбирать очень тщательно. Например, оба числа b и (b – 1)/2 должны быть простыми и иметь длину не менее 512 бит. Рекомендуемая длина чисел составляет 1024 бита. Алгоритм RSA был разработан в 1978 году тремя соавторами и получил свое название по первым буквам фамилий разработчиков (Rivest, Shamir, Adleman). В основе стойкости алгоритма стоит сложность факторизации больших чисел и вычисления дискретных логарифмов. Основной параметр алгоритма RSA – модуль системы N, по которому проводятся все вычисления в системе, а N = R х S (R и S – секретные случайные простые большие числа, обычно одинаковой размерности). Секретный ключ k2 выбирается случайным образом и должен соответствовать следующим условиям: 1 < k2 < F(N) и НОД (k2, F(N))= 1, где НОД – наибольший общий делитель. Иными словами, k1 должен быть взаимно простым со значением функции Эйлера F(N) , причем последнее равно количеству положительных целых чисел в диапазоне от 1 до N, взаимно простых с N, и вычисляется как F(N) = (R – 1) ? (S – 1) . Открытый ключ kl вычисляется из соотношения (k2 х kl) = 1 ? mod F(N). Для этого используется обобщенный алгоритм Евклида (алгоритм вычисления наибольшего общего делителя). Зашифровка блока данных M по алгоритму RSA выполняется следующим образом: C = Mkl ? mod N. Поскольку в реальной криптосистеме с использованием RSA число k1 весьма велико (в настоящее время его размерность может доходить до 2048 бит), прямое вычисление Mk1 нереально. Для его получения применяется комбинация многократного возведения M в квадрат с перемножением результатов. Обращение данной функции при больших размерностях неосуществимо; иными словами, невозможно найти M по известным C, N и kl. Однако, имея секретный ключ k2, при помощи несложных преобразований можно вычислить M = Ck2 ? mod N. Очевидно, что, помимо собственно секретного ключа, необходимо обеспечивать секретность параметров R и S. Если злоумышленник добудет их значения, то сможет вычислить и секретный ключ k2. В настоящее время криптосистема RSA применяется в самых различных продуктах, на различных платформах и во многих отраслях. Достаточно вспомнить ее использование в операционных системах Microsoft, Apple, Sun и Novell, чтобы представить всю "грандиозность" RSA. В аппаратной составляющей алгоритм RSA широко используется в защищенных телефонах, на сетевых платах Ethernet, на смарт-картах, в криптографическом оборудовании Zaxus (Racal). Ко всему прочему, алгоритм входит в состав всех основных протоколов для защищенных коммуникаций Интернет, в том числе S/MIME, SSL и S/WAN, а также используется во многих правительственных учреждениях, государственных лабораториях и университетах. На осень 2000 года технологии с применением алгоритма RSA были лицензированы более чем 700 компаниями. Алгоритм Эль-Гамаля. Эль-Гамаль (Taher Elgamal) разработал вариант системы Диффи—Хеллмана. Он усовершенствовал этот алгоритм и получил один алгоритм для шифрования и один для обеспечения аутентификации. Алгоритм Эль-Гамаля не был запатентован (в отличие от RSA) и таким образом стал более дешевой альтернативой, так как не требовалась уплата лицензионных взносов. Поскольку этот алгоритм базируется на системе Диффи—Хеллмана, то его стойкость обеспечивается сложностью решения все той же задачи дискретного логарифмирования. Алгоритм цифровой подписи (Digital Signature Algorithm). Алгоритм DSA был разработан правительством США как стандартный алгоритм для цифровых подписей (см. разд. 2.3). Данный алгоритм базируется на системе Эль-Гамаля, но позволяет осуществлять только аутентификацию. Конфиденциальность этим алгоритмом не обеспечивается. Шифрование с использованием эллиптических кривых. Эллиптические кривые были предложены для использования в системах шифрования в 1985 году. Системы шифрования с использованием эллиптических кривых (ECC) основываются на отличной от факторизации или дискретного логарифмирования математической задаче. Данная задача заключается в следующем: имея две точки A и B на эллиптической кривой, такие что A = kB, очень трудно определить целое число k. Несмотря на некоторую «экзотичность», использование ECC перед алгоритмом RSA или Диффи—Хеллмана в ряде случаев дает существенное преимущество. Самым большим из таких преимуществ является то, что ключи могут иметь существенно меньшую длину (по причине сложности задачи). И это без потери стойкости! Как результат, вычисления производятся быстрее с сохранением того же уровня безопасности. Так, безопасность, обеспечиваемая 160-битным ключом ECC, может быть приравнена к 1024-битному ключу RSA. Достоинства и недостатки симметричного и асимметричного методов шифрованияНа сегодняшний день в сфере ИБ широко представлены системы как с симметричным шифрованием, так и с асимметричным. Каждый из алгоритмов имеет свои преимущества и недостатки, о которых нельзя не сказать. Основной недостаток симметричного шифрования заключается в необходимости публичной передачи ключей – "из рук в руки". На этот недостаток нельзя не обратить внимание, так как при такой системе становится практически невозможным использование симметричного шифрования с неограниченным количеством участников. В остальном же алгоритм симметричного шифрования можно считать достаточно проработанным и эффективным, с минимальным количеством недостатков, особенно на фоне асимметричного шифрования. Недостатки последнего не столь значительны, чтобы говорить о том, что алгоритм чем-то плох, но тем не менее. Первый недостаток ассиметричного шифрования заключается в низкой скорости выполнения операций зашифровки и расшифровки, что обусловлено необходимостью обработки ресурсоемких операций. Как следствие, требования к аппаратной составляющей такой системы часто бывают неприемлемы. Другой недостаток – уже чисто теоретический, и заключается он в том, что математически криптостойкость алгоритмов асимметричного шифрования пока еще не доказана. Дополнительные проблемы возникают и при защите открытых ключей от подмены, ведь достаточно просто подменить открытый ключ легального пользователя, чтобы впоследствии легко расшифровать его своим секретным ключом. Какими бы недостатками и преимуществами ни обладало ассиметричное и симметричное шифрование, необходимо отметить лишь то, что наиболее совершенные решения– это те, которые удачно сочетают в себе алгоритмы обоих видов шифрования. 2.2. Электронная цифровая подписьБлагодаря бурному развитию сферы информационных технологий в нашу жизнь вошли и стали привычными технологии, без которых современный мир уже трудно себе и представить. Одной из таких технологий, которая, между прочим, стоит на страже безопасности совершаемых в сети операций, является электронная цифровая подпись (ЭЦП). Ее применение в качестве средства для идентификации и подтверждения юридической значимости документов становится стандартом цифрового мира. Электронная цифровая подпись (ЭЦП) – реквизит электронного документа, предназначенный для удостоверения источника данных и защиты данного электронного документа от подделки. Электронная цифровая подпись представляет собой последовательность символов, полученную в результате криптографического преобразования электронных данных. ЭЦП добавляется к блоку данных, позволяет получателю блока проверить источник и целостность данных и защититься от подделки. ЭЦП используется в качестве аналога собственноручной подписи. Благодаря цифровым подписям многие документы – паспорта, избирательные бюллетени, завещания, договора аренды – теперь могут существовать в электронной форме, а любая бумажная версия будет в этом случае только копией электронного оригинала. Основные термины, применяемые при работе с ЭЦПЗакрытый ключ – это некоторая информация длиной 256 бит, которая хранится в недоступном другим лицам месте на дискете, смарт-карте, touch memory. Работает закрытый ключ только в паре с открытым ключом. Открытый (public) ключ используется для проверки ЭЦП получаемых документов-файлов; технически это некоторая информация длиной 1024 бита. Открытый ключ работает только в паре с закрытым ключом. Код аутентификации – код фиксированной длины, вырабатываемый из данных с использованием секретного ключа и добавляемый к данным с целью обнаружения факта изменений хранимых или передаваемых по каналу связи данных. Средства электронно-цифровой подписи – аппаратные и/или программные средства, обеспечивающие: ¦ создание электронной цифровой подписи в электронном документе с использованием закрытого ключа электронной цифровой подписи; ¦ подтверждение с использованием открытого ключа электронной цифровой подписи подлинности ЭЦП в электронном документе; ¦ создание закрытых и открытых ключей электронных цифровых подписей. ЭЦП – это простоНачнем с того, что ЭЦП – это вовсе не «зверь», и никаких специальных знаний, навыков и умений для ее использования не потребуется. Каждому пользователю ЭЦП, участвующему в обмене электронными документами, генерируются уникальные открытый и закрытый (секретный) криптографические ключи. Ключевым элементом является секретный ключ, с помощью которого производится шифрование электронных документов и формируется электронно-цифровая подпись. Секретный ключ остается у пользователя и выдается ему на отдельном носителе: это может быть дискета, смарт-карта или другой носитель. Хранить его нужно в секрете от других пользователей сети. В Удостоверяющем Центре (третья сторона, или так называемый "арбитр") находится дубликат открытого ключа, создана библиотека сертификатов открытых ключей. Удостоверяющий Центр обеспечивает регистрацию и надежное хранение открытых ключей во избежание внесения искажений или попыток подделки. Когда пользователь устанавливает под электронным документом свою электронную цифровую подпись, на основе секретного ключа ЭЦП и содержимого документа путем криптографического преобразования вырабатывается некоторое большое число, которое и является электронно-цифровой подписью данного пользователя под данным конкретным документом. Это число добавляется в конец электронного документа или сохраняется в отдельном файле. В подпись заносится следующая информация: ¦ имя файла открытого ключа подписи; ¦ информация о лице, сформировавшем подпись; ¦ дата формирования подписи. Пользователь, получивший подписанный документ и имеющий открытый ключ ЭЦП отправителя, на их основании выполняет обратное криптографическое преобразование, обеспечивающее проверку электронной цифровой подписи отправителя. Если ЭЦП под документом верна, то это значит, что документ действительно подписан отправителем и в текст документа не внесено никаких изменений. В противном случае будет выдаваться сообщение, что сертификат отправителя не является действительным. Управление ключамиВажной проблемой всей криптографии с открытым ключом, в том числе и систем ЭЦП, является управление открытыми ключами. Необходимо обеспечить доступ любого пользователя к подлинному открытому ключу любого другого пользователя, защитить эти ключи от подмены злоумышленником, а также организовать отзыв ключа в случае его компрометации. Задача защиты ключей от подмены решается с помощью сертификатов. Сертификат позволяет удостоверить заключенные в нем данные о владельце и его открытый ключ подписью какого-либо доверенного лица. В централизованных системах сертификатов (например, PKI – Public Key Infrastructure) используются центры сертификации, поддерживаемые доверенными организациями. В децентрализованных системах (например, PGP – Pretty Good Privacy) путем перекрестного подписания сертификатов знакомых и доверенных людей каждым пользователем строится сеть доверия. Управлением ключами занимаются центры распространения сертификатов. Обратившись к такому центру, пользователь может получить сертификат какого-либо пользователя, а также проверить, не отозван ли еще тот или иной открытый ключ. ЭЦП под микроскопомРассмотрим принцип работы ЭЦП подробнее. Схема электронной подписи обычно включает в себя следующие составляющие: ¦ алгоритм генерации ключевых пар пользователя; ¦ функцию вычисления подписи; ¦ функцию проверки подписи. Функция вычисления подписи на основе документа и секретного ключа пользователя вычисляет собственно подпись. В зависимости от алгоритма функция вычисления подписи может быть детерминированной или вероятностной. Детерминированные функции всегда вычисляют одинаковую подпись по одинаковым входным данным. Вероятностные функции вносят в подпись элемент случайности, что усиливает криптостойкость алгоритмов ЭЦП. Однако для вероятностных схем необходим надежный источник случайности (либо аппаратный генератор шума, либо криптографически надежный генератор псевдослучайных бит), что усложняет реализацию. В настоящее время детерминированные схемы практически не используются. Даже в изначально детерминированные алгоритмы сейчас внесены модификации, превращающие их в вероятностные (так, в алгоритм подписи RSA вторая версия стандарта PKCS#1 добавила предварительное преобразование данных (OAEP), включающее в себя, среди прочего, зашумление). Функция проверки подписи проверяет, соответствует ли она данному документу и открытому ключу пользователя. Открытый ключ пользователя доступен всем, так что любой может проверить подпись под данным документом. Поскольку подписываемые документы переменной (и достаточно большой) длины, в схемах ЭЦП зачастую подпись ставится не на сам документ, а на его хэш. Для вычисления хэша используются криптографические хэш-функции, что гарантирует выявление изменений документа при проверке подписи. Хэш-функции не являются частью алгоритма ЭЦП, поэтому в схеме может быть использована любая надежная хэш-функция. Что же такое хэш? Хэширование представляет собой преобразование входного массива данных в короткое число фиксированной длины (которое называется хэшем или хэш-кодом), таким образом чтобы, с одной стороны, это число было значительно короче исходных данных, но, с другой стороны, с большой вероятностью однозначно им соответствовало. Продолжим. Алгоритмы ЭЦП делятся на два больших класса: ¦ обычные цифровые подписи; ¦ цифровые подписи с восстановлением документа. Обычные цифровые подписи необходимо пристыковывать к подписываемому документу. К этому классу относятся, например, алгоритмы, основанные на эллиптических кривых (ECDSA, ГОСТ Р34.10-2001, ДСТУ 4145-2002). Цифровые подписи с восстановлением документа содержат в себе подписываемый документ: в процессе проверки подписи автоматически вычисляется и тело документа. К этому классу относится один из самых популярных алгоритмов – RSA, который мы рассмотрим в конце раздела. Следует различать электронную цифровую подпись и код аутентичности сообщения, несмотря на схожесть решаемых задач (обеспечение целостности документа и невозможности отказа от авторства). Алгоритмы ЭЦП относятся к классу асимметричных алгоритмов, в то время как коды аутентичности вычисляются по симметричным схемам. Можно сказать, что цифровая подпись обеспечивает следующие виды защиты. ¦ Удостоверение источника документа. В зависимости от деталей определения документа могут быть подписаны такие поля, как "автор", "внесенные изменения", "метка времени" и т. д. ¦ Защита от изменений документа. При любом случайном или преднамеренном изменении документа (или подписи) изменится хэш, и, следовательно, подпись станет недействительной. ¦ Невозможность отказа от авторства. Поскольку создать корректную подпись можно, лишь зная закрытый ключ, а он известен только владельцу, то владелец не может отказаться от своей подписи под документом. Совершенно очевидно, что ЭЦП вовсе не совершенна. Возможны следующие угрозы цифровой подписи, при которых злоумышленник может: ¦ подделать подпись для выбранного им документа; ¦ подобрать документ к данной подписи, чтобы подпись к нему подходила; ¦ подделать подпись для хоть какого-нибудь документа; ¦ подменить открытый ключ (см. подразд. "Управление ключами" разд. 2.2) на свой собственный, выдавая себя за владельца; ¦ обманом заставить владельца подписать какой-либо документ, например, используя протокол слепой подписи; ¦ подписать любой документ от имени владельца ключа, если закрытый ключ уже украден. При использовании надежной хэш-функции вычислительно сложно создать поддельный документ с таким же хэшем, как и у подлинного. Однако эти угрозы могут реализоваться из-за слабостей конкретных алгоритмов хэширования, подписи или ошибок в их реализациях. RSA как фундамент ЭЦПНе секрет, что наибольшую популярность среди криптоалгоритмов цифровой подписи приобрела RSA (применяется при создании цифровых подписей с восстановлением документа). На начало 2001 года криптосистема RSA являлась наиболее широко используемой асимметричной криптосистемой (криптосистемой открытого ключа) и зачастую называется стандартом де факто. Вне зависимости от официальных стандартов существование такого стандарта чрезвычайно важно для развития электронной коммерции и вообще экономики. Единая система открытого ключа допускает обмен документами с электронно-цифровыми подписями между пользователями различных государств, приминяющими различное программное обеспечение на различных платформах; такая возможность насущно необходима для развития электронной коммерции. Распространение системы RSA дошло до такой степени, что ее учитывают при создании новых стандартов. Первым при разработке стандартов цифровых подписей в 1997 году был разработан стандарт ANSI X9.30, поддерживающий Digital Signature Standard (стандарт цифровой подписи). Годом позже был введен ANSI X9.31, в котором сделан акцент на цифровые подписи RSA, что отвечает фактически сложившейся ситуации, в частности для финансовых учреждений. До недавнего времени главным препятствием для замены бумажного документооборота электронным были недостатки защищенной аутентификации (установления подлинности); почти везде контракты, чеки, официальные письма, юридические документы все еще выполняются на бумаге. Появление цифровой подписи на основе RSA сделало осуществление электронных операций достаточно безопасным и надежным. Алгоритм RSA предполагает, что посланное закодированное сообщение может быть прочитано адресатом и только им. Как было уже сказано выше, в этом алгоритме используется два ключа – открытый и секретный. Данный алгоритм привлекателен также в случае, когда большое количество субъектов (N) должно общаться по схеме "все-со-всеми". В случае симметричной схемы шифрования каждый из субъектов каким-то образом должен доставить свои ключи всем остальным участникам обмена, при этом суммарное количество используемых ключей будет достаточно велико при большом значении N. Применение асимметричного алгоритма требует лишь рассылки открытых ключей всеми участниками, суммарное количество ключей равно N. Сообщение представляется в виде числа M. Шифрование осуществляется с помощью общедоступной функции f(M) , и только адресату известно, как выполнить операцию f-1. Адресат выбирает два больших простых (prime) числа p и q, которые делает секретными. Он объявляет n = pq и число d, c (d, p – 1) = (d, q – 1) = 1 (один из возможных способов выполнить это условие – выбрать d больше, чем p/2 и q/2). Шифрование производится по формуле: f(M) = Md х mod n, где M и f(M) оба < n – 1 . Оно может быть вычислено за разумное время, даже если M, d и n содержат весьма большое количество знаков. Адресат вычисляет M на основе Md, используя свое знание p и q. Если dc ? (p_1)1, тогда (Md)e ? p1. Исходный текст M получается адресатом из зашифрованного F(M) путем преобразования: M = (F(M))e (mod pq). Здесь как исходный текст, так и зашифрованный рассматриваются как длинные двоичные числа. Аналогично (Md)e ? qM, если dc ? (q_1)1. е удовлетворяет этим двум условиям, если cd ? (p_1)(q_1)1. Мы можем позволить е = x, когда x является решением уравнения dx + (p – 1)(q – 1)y = 1. Так как (Md)e – M делимо на p и q, оно делимо и на pq. Следовательно, мы можем определить M, зная Md, вычислив его значение в степени е и определив остаток от деления на pq. Для соблюдения секретности важно, чтобы, зная n, нельзя было вычислить p и q. Если n содержит 100 цифр, подбор шифра связан с перебором приблизительно 1050 комбинаций. Данная проблема изучается уже около 100 лет. Теоретически можно предположить, что возможно выполнение операции f-l без вычисления p и q. Но в любом случае задача эта непроста, и разработчики считают ее трудно факторизуемой. Предположим, что мы имеем зашифрованный текст f(M) и исходный текст M и хотим найти значения p и q. Нетрудно показать, что таких исходных данных для решения задачи недостаточно – надо знать все возможные значения Mi. Проясним использование алгоритма RSA на конкретном примере. Выберем два простых числа p = 7; q = l7 (на практике эти числа во много раз длиннее). В этом случае n = pq будет равно ll9. Теперь необходимо выбрать е. Выберем е = 5. Следующий шаг связан с формированием числа d, так чтобы de = 1 х mod [(p – 1)(q – 1)]. d = 77 (использован расширенный алгоритм Евклида). d – секретный ключ, а е и n характеризуют открытый ключ. Пусть текст, который нам нужно зашифровать, представляется M = 19. С = Me х mod n. Получаем зашифрованный текст C = 66. Этот "текст" может быть послан соответствующему адресату. Получатель дешифрует полученное сообщение, используя М = Cd х mod n и C = 66. В результате получается M = 19. На практике общедоступные ключи могут помещаться в специальную базу данных. При необходимости послать партнеру зашифрованное сообщение можно сделать сначала запрос его открытого ключа. Получив его, можно запустить программу шифрации, а результат ее работы послать адресату. Возможно ли взломать ЭЦП?Взлом ЭЦП фактически сводится к взлому алгоритма шифрования. В данном случае возможные варианты взлома мы рассмотрим на примере алгоритма RSA. Существует несколько способов взлома RSA. Наиболее эффективная атака – найти секретный ключ, соответствующий необходимому открытому ключу. Это позволит нападающему читать все сообщения, зашифрованные открытым ключом, и подделывать подписи. Такую атаку можно провести, найдя главные сомножители (факторы) общего модуля n – p и q. На основании p, q и e (общий показатель) нападающий может легко вычислить частный показатель d. Основная сложность – поиск главных сомножителей (факторинг) n. Безопасность RSA зависит от разложения на сомножители (факторинга), что является трудной задачей, не имеющей эффективных способов решения. Фактически, задача восстановления секретного ключа эквивалентна задаче разложения на множители (факторинга) модуля: можно использовать d для поиска сомножителей n, и наоборот: можно использовать n для поиска d. Надо отметить, что усовершенствование вычислительного оборудования само по себе не уменьшит стойкость криптосистемы RSA, если ключи будут иметь достаточную длину. Фактически же совершенствование оборудования увеличивает стойкость криптосистемы. Другой способ взломать RSA состоит в том, чтобы найти метод вычисления корня степени e из mod n. Поскольку С = Me х mod n, то корнем степени e из mod n является сообщение M. Вычислив корень, можно вскрыть зашифрованные сообщения и подделать подписи, даже не зная секретный ключ. Такая атака не эквивалентна факторингу, но в настоящее время неизвестны методы, которые позволяют взломать RSA таким образом. Однако в особых случаях, когда на основе одного и того же показателя относительно небольшой величины шифруется достаточно много связанных сообщений, есть возможность вскрыть сообщения. Упомянутые атаки – единственные способы расшифровать все сообщения, зашифрованные данным ключом RSA. Существуют и другие типы атак, позволяющие, однако, расшифровать только одно сообщение и не позволяющие нападающему вскрыть прочие сообщения, зашифрованные тем же ключом. Кроме того, изучалась возможность расшифровывания части зашифрованного сообщения. Самое простое нападение на отдельное сообщение – атака по предполагаемому открытому тексту. Нападающий, имея зашифрованный текст, предполагает, что сообщение содержит какой-то определенный текст (например, "Штирлиц – Плей-шнеру"). Затем шифрует предполагаемый текст открытым ключом получателя и сравнивает полученный текст с имеющимся зашифрованным текстом. Такую атаку можно предотвратить, добавив в конец сообщения несколько случайных битов. Другая атака на единственное сообщение применяется в том случае, если отправитель посылает одно и то же сообщение M трем корреспондентам, каждый из которых использует общий показатель e = 3. Зная это, нападающий может перехватить эти сообщения и расшифровать сообщение M. Такую атаку также можно предотвратить, вводя перед каждым шифрованием в сообщение несколько случайных битов. Кроме того, существуют несколько видов атак по зашифрованному тексту (или атаки отдельных сообщений с целью подделки подписи), при которых нападающий создает некоторый зашифрованный текст и получает соответствующий открытый текст, например, заставляя обманным путем зарегистрированного пользователя расшифровать поддельное сообщение. Разумеется, существуют и атаки, нацеленные не на криптосистему непосредственно, а на уязвимые места всей системы коммуникаций в целом. Такие атаки не могут рассматриваться как взлом RSA, так как говорят не о слабости алгоритма, а скорее об уязвимости конкретной реализации. Например, нападающий может завладеть секретным ключом, если тот хранится без должной предосторожности. Необходимо подчеркнуть, что для полной защиты недостаточно защитить выполнение алгоритма RSA и принять меры математической безопасности, то есть использовать ключ достаточной длины, так как на практике наибольший успех имеют атаки на незащищенные этапы управления ключами системы RSA. 2.3. Современные технологии аутентификации. Смарт-картыСмарт-карты, подобно Memory-картам, представляют собой пластиковые карты со встроенной микросхемой (ICC, integrated circuit card – карта с интегрированными электронными схемами). Однако смарт-карты представляют собой более сложное устройство, содержащее микропроцессор и операционную систему, контролирующую устройство и доступ к объектам в его памяти. Кроме того, смарт-карты, как правило, обладают возможностью проводить криптографические вычисления. Назначение смарт-карт – одно-и двухфакторная аутентификация пользователя, хранение информации и проведение криптографических операций в доверенной среде. Напомню нашим читателям, что двухфакторная аутентификация подразумевает под собой использование двух атрибутов, удостоверяющих личность, например: пароль и отпечаток пальцев, смарт-карта и сетчатка глаза и т. д. Смарт-карты находят все более широкое применение в различных областях – от систем накопительных скидок до кредитных и дебетовых карт, студенческих билетов и телефонов стандарта GSM. В зависимости от встроенной микросхемы все смарт-карты делятся на несколько основных типов, кардинально различающихся по выполняемым функциям: ¦ карты памяти; ¦ микропроцессорные карты; ¦ карты с криптографической логикой. Карты памяти предназначены для хранения информации. Память на таких типах карт может быть свободной для доступа или содержать логику контроля доступа к памяти карты для ограничения операций чтения и записи данных. Микропроцессорные карты предназначены и для хранения информации, но, в отличие от обычных, они содержат специальную программу или небольшую операционную систему, позволяющую преобразовывать данные по определенному алгоритму, защищать информацию, хранящуюся на карте, при передаче, чтении и записи. Карты с криптографической логикой используются в системах защиты информации для принятия непосредственного участия в процессе шифрования данных или выработки криптографических ключей, электронных цифровых подписей и другой необходимой информации для работы системы. Считыватели для смарт-картНесмотря на название – устройство для чтения смарт-карт, – большинство оконечных устройств, или устройств сопряжения (IFD, InterFace Device), способны как считывать, так и записывать, если позволяют возможности смарт-карты и права доступа. Устройства для чтения смарт-карт могут подключаться к компьютеру посредством последовательного порта, слота PCMCIA, последовательной шины USB. По методу считывания информации карты делятся на следующие: ¦ контактные; ¦ бесконтактные; ¦ со сдвоенным интерфейсом. Контактные карты взаимодействуют со считывателем, соприкасаясь металлической контактной площадкой карты с контактами считывателя. Данный метод считывания просто реализуем, но повышает износ карты при частом использовании. Контактная смарт-карта состоит из трех частей: ¦ контактная область: • шесть или восемь контактов квадратной или овальной формы; • позиции контактов выполнены в соответствии со стандартом ISO-7816; ¦ чип (микропроцессор карты); ¦ пластиковая основа. Устройства чтения смарт-карт могут быть интегрированы в клавиатуру. Некоторые производители выпускают другие виды аппаратных устройств, представляющие собой интеграцию контактной смарт-карты с устройством чтения смарт-карты. Они по свойствам памяти и вычислительным возможностям полностью аналогичны смарт-картам. Наиболее популярны аппаратные "ключи", использующие порт USB. USB-ключи привлекательны для некоторых организаций, поскольку USB становится стандартом, находящим все большее распространение в новых компьютерах: организации не нужно приобретать для пользователей какие бы то ни было считыватели. Использование интеллектуальных устройств при аутентификации с открытым ключомСмарт-карты, USB-ключи и другие интеллектуальные устройства могут повысить надежность служб PKI: смарт-карта может использоваться для безопасного хранения закрытых ключей пользователя, а также для безопасного выполнения криптографических преобразований. Безусловно, интеллектуальные устройства аутентификации не обеспечивают абсолютную защиту, но их защита намного превосходит возможности обычного настольного компьютера. Хранить и использовать закрытый ключ можно по-разному, и разные разработчики используют различные подходы. Наиболее простой из них – использование интеллектуального устройства в качестве дискеты: при необходимости карта экспортирует закрытый ключ, и криптографические операции осуществляются на рабочей станции. Этот подход является не самым совершенным с точки зрения безопасности, зато относительно легко реализуемым и предъявляющим невысокие требования к интеллектуальному устройству. Два других подхода более безопасны, поскольку предполагают выполнение интеллектуальным устройством криптографических операций. При первом пользователь генерирует ключи на рабочей станции и сохраняет их в памяти устройства. При втором он генерирует ключи при помощи устройства. В обоих случаях после того как закрытый ключ сохранен, его нельзя извлечь из устройства и получить любым другим способом. Генерирование ключевых пар. Генерирование ключа вне устройства. В этом случае пользователь может сделать резервную копию закрытого ключа. Если устройство выйдет из строя, будет потеряно, повреждено или уничтожено, пользователь сможет сохранить тот же закрытый ключ на новой карте. Это необходимо, если пользователю требуется расшифровать какие-либо данные, сообщения и т. д., зашифрованные с помощью соответствующего открытого ключа, но это кратковременные проблемы в обеспечении аутентификации. Кроме того, при этом закрытый ключ пользователя подвергается риску быть похищенным. Генерирование ключа с помощью устройстваВ этом случае закрытый ключ не появляется в открытом виде и нет риска, что злоумышленник украдет его резервную копию. Единственный способ использования закрытого ключа – данное обладание интеллектуальным устройством. Являясь наиболее безопасным, это решение выдвигает высокие требования к возможностям интеллектуального устройства: оно должно генерировать ключи и осуществлять криптографические преобразования. Это решение также предполагает, что закрытый ключ не может быть восстановлен в случае выхода устройства из строя и т. п. Об этом необходимо беспокоиться при использовании закрытого ключа для шифрования, но не там, где он используется для аутентификации, или в других службах, где используется цифровая подпись. Для смарт-карт существует несколько международных стандартов, определяющих практически все свойства карт, начиная от размеров, свойств и типов пластика и заканчивая содержанием информации на карте, протоколов работы и форматов данных. ¦ Стандарт ISO-7816 "Идентификационные карты – карты с микросхемой с контактами". Состоит из шести частей, регламентирующих физические характеристики, размер и расположение контактов, сигналы и протоколы, структуру файлов, адресацию и команды обмена. ¦ Стандарт EMV (Europay, MasterCard & Visa). Первая и вторая части базируются на ISO-7816, в последующих частях добавлены определения обработки транзакций, спецификации терминалов и т. д. «Страшная анатомия» смарт – возможен ли взлом?Согласно объективной статистике, в 2002 году по всему миру было продано почти 2 млрд интеллектуальных карточек со встроенным микрочипом, и в ближайшие годы ожидается рост продаж подобных устройств. В чем заключается такая популярность смарт-карт? Вероятно, в том, что область применения этих "девайсов" все время расширяется: от банковской и телефонной карты до цифрового паспорта-идентификатора. Массовая экспансия смарт-карт потребовала от производителей чего-то большего, чем просто заверения о безопасности технологии "smart". А можно ли взломать смарт-карту, и если да, то как это сделать? Можно. Согласно шокирующей объективной статистике, уже примерно с 1994 года практически все (включая европейские, а затем американские и азиатские) из известных на то время смарт-карточных чипов, применявшихся в системах платного телевидения, были успешно взломаны при помощи методов обратной инженерии. А вы думаете, откуда на прилавках популярных рынков появились системы для просмотра закрытых ТВ-каналов? Если кому-то из читателей вдруг покажется, что взлом банковской смарт-карты сродни фантастике, смеем вас уверить, что это не так. Все дело в том, что и без того закрытые сведения подобного рода просто-напросто стараются не разглашать, дабы не нарушить репутацию обслуживающих банковских структур. Рассмотрим некоторые из методов, применяемых в настоящее время для вскрытия. Отметим, что профессиональный взлом, как правило, подразумевает совместное использование нескольких методик. Анализ информации из побочных каналов подразумевает, что взломщик с помощью специализированной аппаратуры снимает электромагнитную картину побочного излучения в питании, интерфейсных соединениях, в схемах процессора и других узлах, прямым или косвенным образом задействованных в генерации, преобразовании или передаче рабочего сигнала. Программные атаки подразумевают использование самого обычного интерфейса взаимодействия с процессором смарт-карты. Как правило, в этом случае взлом возможен благодаря наличию явных уязвимостей средств защиты протоколов или криптографических алгоритмов. Технологии внедрения, или микрозондирование. При этом используется микроскоп, и с помощью микроманипулятора атакующий получает доступ непосредственно к рабочей зоне чипа, где пошагово (побитно) регистрируется прохождение информации. Технологии индуцированных сбоев подразумевают создание внештатных условий работы чипа, чтобы открыть потенциальные каналы доступа к защищенной информации. Например, в конце сентября 1996 года научный коллектив из Bellcore (научно-исследовательский центр американской компании Bell) сообщил о том, что обнаружена серьезная потенциальная слабость общего характера в защищенных криптографических устройствах, в частности в смарт-картах для электронных платежей (D. Boneh, R.A. DeMillo, R.J. Lipton «On the Importance of Checking Cryptographic Protocols for Faults»; www.demiLLo.com/PDF/smart.pdf). Авторы назвали свой метод вскрытия «криптоанализом при сбоях оборудования» (Cryptanalysis in the Presence of Hardware Faults). Суть же метода заключается в том, что искусственно вызванная с помощью ионизации или микроволнового облучения ошибка в работе электронной схемы позволяет сравнить сбойные значения на выходе устройства с заведомо правильными значениями, тем самым восстанавливая криптографическую информацию, хранящуюся в смарт-карте. |
|
||
Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Наверх |
||||
|